Knee landmarks detection via deep learning

A deep learning-based approach was developed and validated in this study which aimed to automatically measure the patellofemoral instability (PFI) indices related to patellar height and trochlear dysplasia in knee MRI scans. The authors included a total of 763 knee MRI slices from 95 patients, annotating 3,393 anatomical landmarks.

The results indicated that the developed models achieved good accuracy in predicting the landmarks’ locations. The clinical implications of this study show that artificial intelligence may improve the reproducibility and reliability of the imaging evaluation of trochlear anatomy and patellar height, which can help assist radiologists when assessing patellofemoral instability.

Key points:

  • Imaging evaluation of patellofemoral instability is subjective and vulnerable to substantial intra and interobserver variability.
  • Patellar height and trochlear dysplasia are reliably assessed in MRI by means of artificial intelligence (AI).
  • The developed AI framework provides an objective evaluation of patellar height and trochlear dysplasia enhancing the clinical practice of the radiologists.

Article: Knee landmarks detection via deep learning for automatic imaging evaluation of trochlear dysplasia and patellar height

Authors: Roberto M. Barbosa, Luís Serrador, Manuel Vieira da Silva, Carlos Sampaio Macedo & Cristina P. Santos

WRITTEN BY

Latest posts

Become A Member Today!

You will have access to a wide range of benefits that can help you advance your career and stay up-to-date with the latest developments in the field of radiology. These benefits include access to educational resources, networking opportunities with other professionals in the field, opportunities to participate in research projects and clinical trials, and access to the latest technologies and techniques. 

Check out our different membership options.

If you don’t find a fitting membership send us an email here.

Membership

for radiologists, radiology residents, professionals of allied sciences (including radiographers/radiological technologists, nuclear medicine physicians, medical physicists, and data scientists) & professionals of allied sciences in training residing within the boundaries of Europe

  • Reduced registration fees for ECR 1
  • Reduced fees for the European School of Radiology (ESOR) 2
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology 
  • Content e-mails for all ESR journals4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 11 /year

Yes! That is less than €1 per month.

Free membership

for radiologists, radiology residents or professionals of allied sciences engaged in practice, teaching or research residing outside Europe as well as individual qualified professionals with an interest in radiology and medical imaging who do not fulfil individual or all requirements for any other ESR membership category & former full members who have retired from all clinical practice
  • Reduced registration fees for ECR 1
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology
  • Content e-mails for all ESR journals 4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 0

The best things in life are free.

ESR Friends

For students, company representatives or hospital managers etc.

  • Content e-mails for all 3 ESR journals 4
  • Updates on offers & events through our newsletters

€ 0

Friendship doesn’t cost a thing.

The membership type best fitting for you will be selected automatically during the application process.

Footnotes:

01

Reduced registration fees for ECR 2025:
Provided that ESR 2024 membership is activated and approved by August 31, 2024.

02
Not all activities included
03
Examination based on the ESR European Training Curriculum (radiologists or radiology residents).
04
European Radiology, Insights into Imaging, European Radiology Experimental.