

Nuclear Medicine

MODERN RADIOLOGY

/ Preface

Modern Radiology is a free educational resource for radiology published online by the European Society of Radiology (ESR). The title of this second, rebranded version reflects the novel didactic concept of the *ESR eBook* with its unique blend of text, images, and schematics in the form of succinct pages, supplemented by clinical imaging cases, Q&A sections and hyperlinks allowing to switch quickly between the different sections of organ-based and more technical chapters, summaries and references.

Its chapters are based on the contributions of over 100 recognised European experts, referring to both general technical and organ-based clinical imaging topics. The new graphical look showing Asklepios with fashionable glasses, symbolises the combination of classical medical teaching with contemporary style education.

Although the initial version of the *ESR eBook* was created to provide basic knowledge for medical students and teachers of undergraduate courses, it has gradually expanded its scope to include more advanced knowledge for readers who wish to 'dig deeper'. As a result, *Modern Radiology* covers also topics of the postgraduate levels of the *European Training Curriculum for Radiology*, thus addressing postgraduate educational needs of residents. In addition, it reflects feedback from medical professionals worldwide who wish to update their knowledge in specific areas of medical imaging and who have already appreciated the depth and clarity of the *ESR eBook* across the basic and more advanced educational levels.

I would like to express my heartfelt thanks to all authors who contributed their time and expertise to this voluntary, nonprofit endeavour as well as Carlo Catalano, Andrea Laghi and András Palkó, who had the initial idea to create an *ESR eBook*, and - finally - to the ESR Office for their technical and administrative support.

Modern Radiology embodies a collaborative spirit and unwavering commitment to this fascinating medical discipline which is indispensable for modern patient care. I hope that this *educational* tool may encourage curiosity and critical thinking, contributing to the appreciation of the art and science of radiology across Europe and beyond.

Minerva Becker, Editor

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

/ Copyright and Terms of Use

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

Share, copy and redistribute the material in any medium or format

Under the following terms:

- ATTRIBUTION You must give <u>appropriate</u> credit, provide a link to the license, and **indicate if** changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NONCOMMERCIAL** You may not use the material for <u>commercial purposes</u>.
- **NODERIVATIVES** If you remix, transform, or build upon the material, you may not distribute the modified material.

How to cite this work:

European Society of Radiology, Pairavi Gnanananthan, Mitesh Naik, Tara D Barwick (2025) ESR Modern Radiology eBook:

/ Nuclear Medicine. DOI 10.26044/ esr-undergraduate-ebook-18

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

MODERN RADIOLOGY

/ Signage			Nuclear Medicine
			CHAPTER OUTLINE:
<=> CORE KNOWLEDGE			Introduction
	ATTENTION	<t> HYPERLINKS</t>	Nuclear Medicine Imaging Principles
>=< FURTHER KNOWLEDGE			Planar and SPECT Studies
	> COMPARE	COD REFERENCES	PET Studies
			Take-Home Messages
	QUESTIONS		References
			Test Your Knowledge

Based on the ESR Curriculum for Radiological Education

Nuclear Medicine

AUTHORS

Pairavi Gnanananthan | Mitesh Naik | Tara D. Barwick

AFFILIATION

Department of Radiology, Imperial College Healthcare NHS Trust, London

pairavi.gnanananthan1@nhs.net m.naik@nhs.net

<>> HYPERLINK

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

5

MODERN RADIOLOGY

/ Chapter Outline

/ Introduction

/ Terminology

/ Radiopharmaceuticals

Nuclear Medicine Imaging Principles

- / Gamma Camera
- / Planar Imaging
- / SPECT Imaging
- / PET Imaging
- / Nuclear Medicine Applications

Planar and SPECT Studies

- / Bone Scan
- Thyroid Scan
- / Ventilation/Perfusion Scan
- / Renal: DMSA
- Renal: Renogram
- Myocardial Perfusion Imaging
- / Metaiodobenzylguanidine (MIBG)
- / DAT Scan

PET Studies

- / FDG
- / PSMA
- / DOTATATE

Take-Home Messages

- References
- / Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

/ Introduction

/ Introduction

What is Nuclear Medicine

Nuclear Medicine is the practice of using small guantity of unsealed radioactive sources to diagnose, monitor disease and provide targeted therapy.

Most imaging modalities, such as computed tomography (CT) or magnetic resonance imaging (MRI)

demonstrate body anatomy. Nuclear medicine is one of the few imaging modalities that demonstrate body physiology, so called 'functional' imaging. For example, a whole-body bone scan shows bone turnover. This allows nuclear medicine to have a wide range of applications across many body systems, and pathologies.

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine **Imaging Principles**

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

CORE KNOWLEDGE <=>

MODERN RAD[§]OLOGY

/ Terminology

- A radiopharmaceutical combines a radionuclide and pharmaceutical.
- A radionuclide is an unstable form of an element that emits radiation from its nucleus as it decays to a more stable form. The emitted radiation from the patient is used to create the image in nuclear medicine. Elements used for diagnostic imaging usually either emit beta particles (positrons or electrons) or gamma rays.

- Pharmaceuticals have properties that help to target specific organs/tissues or molecular pathways.
- Technetium-99m is the most used radionuclide in nuclear medicine and can be combined with a wide range of pharmaceuticals which enables targeting of different organs and physiological processes.

CHAPTER OUTLINE:

Introduction

/ Terminology

Nuclear Medicine **Imaging Principles**

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Technetium-99m

Hydroxy diphosphonate (HDP)

[99mTc]Tc-HDP whole body bone scan

Radiopharmaceuticals

CHAPTER OUTLINE: RADIONUCLIDE HALF-LIFE PHARMACEUTICAL **CLINICAL INDICATION** Introduction Pertechnetate Thyroid imaging, Meckel scan / Radiopharmaceutical Methyl diphosphonate (MDP) or Nuclear Medicine Bone scan for cancer staging, arthropathy hydroxydiphosphonate (HDP) Imaging Principles Planar and SPECT Diethylene-triamine-pentaacetate (DTPA) Renal imaging, lung ventilation imaging (aerosol) Studies **PET Studies** Technetium-99m Sestamibi Cardiac, parathyroid 6 hours ([99mTc]Tc) Take-Home Messages Macroaggregated albumin (MAA) Lung perfusion imaging References Test Your Knowledge Technegas Lung ventilation imaging Mercaptoacetyltriglycine (MAG 3) Renal 2,3 dimercaptosuccinic acid (DMSA) Renal

TABLE 1

Commonly used radiopharmaceuticals

RADIONUCLIDE	HALF-LIFE	PHARMACEUTICAL	CLINICAL INDICATION	CHAPTER OUTLINE:
		-	Thyroid imaging	Introduction / Radiopharmaceutical
lodine-123 ([1231]1)	13.2 hours	loflupane	Brain-parkinsonian syndromes	Nuclear Medicine Imaging Principles
		Metaiodobenzylguanidine (MIBG)	Neuroectodermal tumour imaging	Planar and SPECT Studies
lodine-131 ([¹³¹ l]l)	8 hours	-	Thyroid imaging and treatment	PET Studies
Indium-111 ([¹¹¹ In]In)	2.8 days	Octreotide, Pentetreotide	Neuroendocrine tumour	Take-Home Messages
				References
Krypton-81m ([⁸¹ Kr]Kr)	13 seconds	-	Lung ventilation imaging	Test Your Knowledge

CONTINUATION OF TABLE 1

Commonly used radiopharmaceuticals

MODERN RADIOLOGY

/ Nuclear Medicine

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

/ Nuclear Medicine Imaging Principles

<!> ATTENTION

Nuclear Medicine (NM) Imaging

<!> ATTENTION

/ Gamma Camera

- 1. Radionuclides decay releasing gamma photons.
- 2. Collimators are made of lead with holes. These only accept gamma photons that travel parallel to the collimator holes.
- A scintillation crystal is fluorescent; i.e., when a gamma photon interacts, it releases light photons. The amount of light is proportional to the deposited energy of the gamma photons.
- 4. Photomultiplier tubes detect the light photons from the crystal and convert these into an electrical signal.
- A computer processes the electrical signal to calculate the energy of the received photons and their x, y coordinates within the patient to form the final images.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

/ Gamma Camera

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

/ Planar Imaging

- 2D imaging technique.
- Typically, anterior and posterior views.
- Oblique views depending on clinical indication.
- Commonly used applications include bone, kidneys, thyroid, hepatobiliary and gastrointestinal tract imaging.

Static

- Radiopharmaceutical is injected intravenously/ingested, and images are acquired after a certain time period delay called 'uptake time'.
- The uptake time and scan duration is dependent upon the half life of the radionuclide and the study being performed. E.g., 2-3 hours for a Technetium-99m labelled DMSA

renal scan compared to 4-6 hours for an lodine-123 thyroid uptake scan.

Static imaging is used to gain information about the organ of interest based on size, morphology, intensity and position of radiopharmaceutical uptake.

/ Nuclear Medicine

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

/ Planar Imaging

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

MODERN RAD OLOGY

Dynamic

- Distribution of radiopharmaceuticals change with time due to their inherent properties.
- / Images are usually acquired immediately post injection with series of frames over time.

- / Time interval between frames varies between different studies.
- / Functional assessment of a system is provided based on radiopharmaceutical distribution over time.

MODERN RADYOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

/ Planar Imaging

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 5

[99mTc]Tc-MAG3 Renogram

/ SPECT and SPECT/CT Imaging

Single photon emission computed tomography (SPECT) is an extension of conventional gamma camera imaging.

Typically, two gamma camera heads rotate around the patient on a gantry acquiring a series of planar images which are reconstructed into 3D images.

Computed Tomography (CT) images may be acquired alongside SPECT. These permit attenuation correction and localisation of sites of radiotracer uptake in the body.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

/ SPECT and SPECT/ CT Imaging

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 6 Schematic diagram of SPECT scanner

SPECT Applications

Commonly used applications include cardiac, bone, parathyroid, pulmonary, and brain imaging.

Figure 7 demonstrates normal radiopharmaceutical distribution in a V/Q SPECT scan.

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

/ SPECT and SPECT/ CT Imaging

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 7

>< COMPARE

Comparison of SPECT and Planar Imaging

MODERNRAD[§]OLOGY

PLANAR	SPECT	CHAPTER OUTLINE:
Poorer contrast and spatial resolution compared to	Better contrast and spatial resolution compared to	Introduction
SPECT	planar	Nuclear Medicine Imaging Principles
Use gamma emitting radionuclide	Use gamma emitting radionuclide	/ SPECT and SPECT/ CT Imaging
Generally shorter image acquisition times depending on study type	Longer image acquisition times	Planar and SPECT Studies
Peorer localization compared to SPECT(2D)	Localization at donth as a tomographic toohnique (2D)	PET Studies
rooren localisation compared to SPECT(2D)	Localisation at deput as a tomographic technique (SD)	Take Home Medduged

Test Your Knowledge

References

/ Positron Emission Tomography (PET) Imaging

PET imaging uses radionuclides that are proton rich (nucleus contains a relatively large number of protons compared to neutrons) and decay by positron emission.

The positron-emitting radionuclide undergoes β^+ decay with a proton converted to a neutron, a positron and a neutrino. The positron (e⁺) is the antiparticle of the electron (e⁻) with the same mass and electrical charge as the electron. However, the charge is positive.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

/ PET Imaging

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 8

Positrons travel a short distance through tissue and annihilate with electrons (see Figure 8, page 20).

This annihilation process, produces two photons of 511 kiloelectron volts (keV) energy which travel in opposite directions (at 180° to each other) and are detected by opposed radiation detectors.

The near simultaneous detection of the two photons allows the localisation of their origin to a line joining the detectors which is called annihilation coincidence detection.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

/ PET Imaging

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 9 PET scanner

21

MODERN RADIOLOGY

 PET is combined with CT for attenuation correction and anatomical localisation.

FIGURE 10

Diagram of PET/CT scanner

СТ

				/ Nuclear Medicine CHAPTER OUTLINE: Introduction Nuclear Medicine Imaging Principles / PET Imaging
	Nº Z			Planar and SPECT Studies
	Anatomy	Function	Anatomy	PET Studies
	/ liacomy	ranction	TUNCTION	Take-Home Messages
Dr	- -			References
PE	ΞΤ	FIGURE 11 [¹⁸ F]FDG PET/CT, Coronal CT, P	ET and fused	Test Your Knowledge

Positron Emitting Tracers-Common Clinical Examples

RADIONUCLIDE	PHYSICAL HALF-LIFE (MINS)	PRODUCTION METHOD	PHARMACEUTICAL	PHYSIOLOGICAL PROCESS	CLINICAL APPLICATION	CHAPTER OUTLINE:
						Introduction
			Fludeoxyglucose (FDG)	Glucose metabolism	Oncology, infection	Nuclear Medicine Imaging Principles
Fluorine-18 ([¹⁸ F]F)	110	Cyclotron	Fluorocholine	Cell membrane metabolism Prostate cancer Parathyroid imaging	Prostate cancer	/ PET Imaging
						Planar and SPECT
			Prostate-specific membrane antigen (PSMA-1007) DcF-PyL	PSMA expression	Prostate cancer	Studies
						PET Studies
Gallium-68 ([⁶⁸ Ga]Ga)	68	Generator	Dotatate	Somatostatin receptor expression	Neuroendocrine tumour	Take-Home Messages
						References
						Test Your Knowledge
			PSMA-11	PSMA expression	Prostate cancer	

Commonly used positron emitting tracers

>< COMPARE

Comparison of SPECT and PET Imaging

SPECT	PET	CHAPTER OUTLINE:
Lower cost compared to PET	More expensive compared to SPECT	Introduction
		Nuclear Medicine Imaging Principles
Use gamma emitting radionuclide	Use positron emitting radionuclide	/ SPECT and SPECT/ CT Imaging
1-3 large detectors	Ring of multiple detectors	Planar and SPECT Studies
Poorer spatial resolution 10-15 mm	Higher spatial resolution 5-8 mm	PET Studies
Can be combined with CT for attenuation correction	Can be combined with CT for attenuation correction	Take-Home Messages
and anatomical localisation	and anatomical localisation	References
		Test Your Knowledge

TABLE 4

MODERN RADIOLOGY

/ Applications of Planar, SPECT and PET

Bone

- Metabolic disease
- Rheumatology
- / Infection
- Trauma

Cardiac

- Ventricular function
- Perfusion
- / Infarct

Blood

- Inflammation
- / Infection
- Red cell mass

Brain

- Dementia Movement disorder Seizure
- Tumour

Liver/Spleen

- Function Blood volume
- Lungs
- Perfusion Ventilation

Function Metastatic disease

Oncology

- / Sentinel lymph node
- / Solid organ tumours
- / Prostate cancer: PSMA receptor
- / Neuroendocrine tumours: somatostatin receptor
- / Therapy

Renal

- / Function/ Morphology/Scarring
- / Obstruction/Blood flow

GI

/ Transit/ Bleeding

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

 Nuclear Medicine Applications

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 12

Nuclear Medicine Applications

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Planar and SPECT Studies

/ Bone Scan

Indications:

Oncology (particularly prostate and breast cancer), rheumatology, bone and joint infections, painful joint prosthesis, metabolic bone disease

Route: Administered intravenously

Radiopharmaceutical:

Technetium-99m ([^{99m}Tc]Tc) labelled bisphosphonates such as ([^{99m}Tc]Tc -HDP (hydroxyethylene diphosphonate) or MDP (methylene diphosphonate) which bind to calcium and hydroxyapatite crystals in bone in proportion to local vascularity and osteoblastic activity

Image acquisition:

- Anterior and posterior whole body planar: Acquired 3-4 hours post-injection for optimal concentration of radiopharmaceutical by osteoblasts and clearance from tissues
- **Dynamic: 3 phases:** selected cases, e.g., infected prosthesis
 - Flow phase (2-to-5 second images obtained for 60 seconds immediately after injection)
 - / Blood pool phase (5 minutes after injection)
 - / Delayed phase (3-4 hours after injection)

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

MODERNRAD OLOGY

Planar Normal Case example

Biodistribution in the skeleton should be homogenous and almost symmetrical for left and right sides.

Excretion route is renal so there is visualisation of kidneys and bladder.

FIGURE 13

Normal [99mTc]Tc- HDP whole body bone scan

Dynamic: Normal Case example

1st phase (Flow phase)

Dynamic study to demonstrate the presence of blood flow in the affected area (e.g., inflammation/infection of a joint replacement). 2-to-5 second images are obtained for 60 seconds after injection of radiopharmaceutical. Focused on region of interest/clinical concern, e.g., hip.

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 14

Normal perfusion phase of dynamic bone scan of the hip area

Dynamic: Normal Case example

2nd phase (Blood phase)

Early static views to visualise the distribution of radiopharmaceutical into the extra-cellular space. Focused on region of interest/clinical concern.

Posterior

LT LT RT

Anterior

3rd phase (Delayed phase)

2-4 hours later, static view-vertex to toes.

MODERN RAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 15

Normal blood pool phase of the hip area and whole body bone scan

Posterior

CORE KNOWLEDGE <=>

Case: Metastatic disease

63 years old male with prostate cancer.

There is intense radiopharmaceutical uptake within axial and appendicular skeleton, including the right sacrum (blue arrows), left acetabulum (yellow arrows), and vertebral bodies (purple arrows), and ribs (red arrows), skull (green arrows) in keeping with osteoblastic metastatic disease.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine **Imaging Principles**

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 16 [99mTc]Tc- HDP whole body bone scan

Case: "Superscan"

74 years old male. Known history of prostate malignancy.

Diffuse slightly heterogeneous increased radiopharmaceutical uptake throughout the imaged skeleton, including the skull and long bones. Although there is some activity in the urinary bladder, there is only very faint activity in the kidneys.

The overall appearances would be in keeping with a superscan, indicating diffuse metastatic bone involvement, given the history of prostate malignancy.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 17

[99mTc]Tc- HDP whole body bone scan

Nuclear Medicine

CHAPTER OUTLINE:

Nuclear Medicine

Imaging Principles

Planar and SPECT

Take-Home Messages

Test Your Knowledge

Introduction

Studies

/ Bone Scan

PET Studies

References

Case: Paget's disease

84 years old male, raised ALP.

Patchy increased uptake within the skull (blue arrow), intense uptake within the entire mandible (yellow arrow), L3 vertebral body pedicles and spinous process (purple arrow), and also within the right hemipelvis (red arrow). There is associated expansion of the right hemipelvis. The appearances are in keeping with polyostotic Paget's.

Case: breast cancer vertebral metastasis

54 years old female. Known breast cancer. Mid thoracic back pain

Increased uptake within the T9 vertebral body demonstrated on the posterior view of the whole body bone scan is subtle (blue arrow). The subsequent SPECT/CT allows better localisation to the T9 vertebral body as well demonstrating the vertebral body height loss/collapse (yellow arrow).

FIGURE 20

[99mTc]Tc- HDP whole body bone scan

[99mTc]Tc- HDP SPECT/CT

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

CORE KNOWLEDGE <=>

Case: Bone SPECT/CT for pain generators

32 years old female. Lower back pain.

No significant uptake demonstrated on whole body scan to explain the patient's symptoms. The subsequent SPECT/ CT demonstrates increased uptake at the L3/L4 disc space (blue arrow) and right L2/ L3 facet joint (yellow arrow) which are likely to be the main osseous pain generators.

Anterior

Sagittal and axial SPECT/CT fused

FIGURE 21

[99mTc]Tc- HDP whole body bone scan

FIGURE 22 [99mTc]Tc-HDP SPECT/CT

Sagittal and axial SPECT MIP

Nuclear Medicine

CHAPTER OUTLINE:

Introduction

Nuclear Medicine **Imaging Principles**

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

MODERN RAD[§]OLOGY

MODERN RAD OLOGY

Case: Lytic metastatic disease from breast cancer

62 years old female. Breast cancer 10 years. Presenting with bilateral hip pain.

No significant uptake demonstrated on whole body scan to explain the patient's symptoms. The subsequent SPECT/ CT demonstrates lucent lesions within bilateral acetabuli which do not demonstrate increased uptake, in keeping with osteoclastic metastatic disease.

FIGURE 23 [^{99m}Tc]Tc- HDP whole body bone scan

Axial SPECT MIP

Axial CT Bone window

Axial SPECT/CT Fused

FIGURE 24 [^{99m}Tc]Tc- HDP SPECT/CT

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

36
>< COMPARE

Strengths and limitations:

Uptake of Technetium-99m is based on vascularity and osteoblastic activity. Other bone lesions such as infection and trauma can also demonstrate high uptake. Therefore, bone scans are sensitive but nonspecific so correlation with other modalities may be needed. Lytic lesions (e.g., myeloma and certain tumour metastases, e.g., renal cell) may not be visible on bone scintigraphy as bone scans assess osteoblastic activity and these are typically osteoclastic.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Bone Scan

PET Studies

Take-Home Messages

References

/ Thyroid Scintigraphy

CHAPTER OUTLINE:

RADIOPHARMACEUTICAL	PRODUCTION	EMISSION AND HALF LIFE	MECHANISM	USES	PROS/CONS	Introduction
		Gamma		T I	Rapid examination, poor	Nuclear Medicine Imaging Principles
[⁹⁹ mTc]Tc- pertechnetate	Generator	rays, 6 hours	follicular cells	i nyroid uptake and imaging	image quality when low uptake Relatively expensive and	Planar and SPECT Studies
lodine-123 ([¹²³ 1]1)	Cyclotron	Gamma rays, 13 hours	trapped by normal follicular cells, organified and stored in colloid space	Thyroid uptake and imaging Thyroid cancer metastases	Relatively expensive and unavailable as cyclotron, better image quality when uptake is low	/ Thyroid Scan
						PET Studies
						Take-Home Messages
						References
lodine-131 ([¹³¹ 1]1)	Reactor	Beta and gamma rays, 8.06 days	trapped by normal follicular cells, organified and stored in colloid space	Hyperthyroidism / thyroid cancer treatment		Test Your Knowledge

Route: Administered intravenously

(Both [123]] and [99mTc]Tc-pertechnetate)

Image acquisition:

- Anterior, left anterior oblique and right anterior oblique views
- [¹²³I]I: Either at 4-6 or 24 hours after administration
- [^{99m}Tc]Tc-pertechnetate): 20 minutes after administration

<!> ATTENTION

Certain medications can interfere with thyroid uptake of the radiopharmaceutical

No iodine-containing contrast for 6 weeks prior

No iodine-containing medications for 4 weeks prior

No amiodarone for 3-6 months prior

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Thyroid Scan

PET Studies

Take-Home Messages

References

Normal Case

Tc99m thyroid scan.

Diffuse homogenous uptake within both lobes of the thyroid gland.

Mild homogenous uptake noted within the salivary glands.

MODERN RAD OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Thyroid Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 25

Normal [99mTc]Tc Thyroid scan

Case: Graves' Disease

Tc99m thyroid scan.

Diffuse and relatively uniform uptake by the entire enlarged thyroid gland.

Background salivary activity is suppressed. The percentage uptake is 25.9% (normal range 0.45-3.5%).

Chin and suprasternal (SSN) markers for anatomical localisation.

Anterior

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Thyroid Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 26

[99mTc]Tc Thyroid scan

Differential Diagnosis of Hyperthyroidism

Thyroid Scintigraphy is the key test for differentiating causes of hyperthyroidism due to different patterns of uptake:

- A. Graves' disease homogenous increased uptake
- B. Toxic multinodular goitre
 multifocal uptake, often heterogenous
- C. Autonomous toxic nodule
 uptake in a single, often enlarged, nodule
- D. Subacute thyroiditis no uptake

A 'cold' focal area with reduced uptake is concerning for a malignant nodule. In these cases, ultrasound is needed to better characterise the nodule and determine whether biopsy is required.

MODERNRAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Thyroid Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 27 [^{99m}Tc]Tc Thyroid scan

/ Ventilation/Perfusion (V/Q) Scan

Indications:

Diagnosis of acute pulmonary embolism with normal chest radiograph.

Work-up of patients with pulmonary hypertension to determine whether the cause is due to chronic thromboembolic disease.

Quantification of differential lung function preoperatively (for example prior to pneumonectomy in lung cancer patients).

>=< FURTHER KNOWLEDGE

Pregnant patient should be counselled regarding radiation doses. Typically, radiation dose to maternal breast tissue is greater for CTPA compared to V/Q scan; doses to fetus are equivalent.

<!> ATTENTION

If performing V/Q scan for acute pulmonary embolism, make sure chest radiograph has been performed and reviewed within 12 to 24 hours prior to lung scintigraphy. This is because there are other causes of perfusion defects which can be excluded on chest radiograph such as atelectasis, pneumonia, etc.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ V/Q Scan

PET Studies

Take-Home Messages

References

Radiopharmaceutical and Route:

Perfusion:

Technetium-99m labelled human albumin (MAA) administered intravenously: These lodge in patent precapillary arterioles and capillaries and occlude the arteries temporarily reflecting regional perfusion.

Ventilation:

Krypton-81 gas administered as an aerosol for ventilation. This is inhaled until it reaches a steady state in the alveoli and then continuously during the scan. It reflects regional ventilation.

[^{99m}Tc]Tc labelled aerosols, DTPA or Technegas accumulate in bronchiole and alveoli.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ V/Q Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

Posterior Vent

FIGURE 28

Planar images from a Normal V/Q scan

MODERN RADIOLOGY

Image acquisition:

- Imaging starts with the ventilation scan, immediately followed by the perfusion scan.
- Perfusion imaging and ventilation using [⁸¹Kr]Kr gas can be imaged at the same time as the perfusion study due to different energy windows of [⁸¹Kr]Kr (190 keV) and [^{99m}Tc]Tc (140 keV)
- If DTPA or Technegas are used, the ventilation and perfusion will need to be acquired separately due to the same radionuclide being used
- SPECT imaging with additional CT component (Planar if SPECT not available)

EANM guideline for ventilation/perfusion single-photon emission computed tomography (SPECT) for diagnosis of pulmonary embolism and beyond, 2019

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ V/Q Scan

PET Studies

Take-Home Messages

References

Normal Case

Diffuse homogenous uptake within both lungs.

No mismatch between perfusion and ven-tilation imaging.

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ V/Q Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 29

Planar images from a Normal V/Q scan

Case: Bilateral subsegmental pulmonary emboli

24 years old female. Focal segmental glomerulosclerosis with nephrotic syndrome. Previous pulmonary embolism. Similar pain and worsening shortness of breath whilst on apixaban. On the SPECT/CT, there are bilateral subsegmental wedge shaped perfusion defects in the lateral segments of both lower lobes and posterior segment of the right lower lobe (blue arrows), which are mismatched and with no corresponding CT abnormality.

MODERN RAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ V/Q Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

SPECT Perfusion

SPECT Ventilation

Axial CT Lung Window

FIGURE 30

>< COMPARE

Comparison of V/Q Scan and CTPA

V/Q SCAN	СТРА	CHAPTER OUTLINE:	
Can be used in patients with contrast nephropathy and renal impairment	Quicker, Readily available	Introduction Nuclear Medicine	
Reduced radiation burden to radiosensitive breast tissue in pregnant women	Alternative explanations for the patient's symptoms, e.g., pneumothorax	- Imaging Principles Planar and SPECT Studies / V/Q Scan PET Studies Take-Home Messages References	
Diagnosis of chronic thromboembolic pulmonary hypertension	If there is PE, can demonstrate findings of right heart strain		

Test Your Knowledge

TABLE 6

Comparison of V/Q scan and CTPA Abbreviations: CT pulmonary angiogram (CTPA); pulmonary embolism (PE)

/ Dimercapto Succinic Acid (DMSA) Renal Scan

Indications:

- Detection of focal renal parenchymal abnormalities including assessment of renal scarring
- Differential renal function estimation
- Assessment of horseshoe, solitary or ectopic kidney

Radiopharmaceutical:

Technetium-99m labelled-DMSA (2, 3-dimercaptosuccinic acid) is protein-bound and removed from plasma, and concentrates in the proximal tubules of the renal cortex

Route: Administered intravenously

Image acquisition:

- Static planar 2-3 hours post-injection
- Views: anterior, posterior and 45 degree left and right posterior oblique

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DMSA Renal Scan

PET Studies

Take-Home Messages

References

Normal Case

Relative higher radiopharmaceutical uptake within the right kidney (yellow arrow) compared to the left kidney (blue arrow) due its superficial position, i.e., closer to the gamma camera. Otherwise, both kidneys have a normal contour and exhibit homogenous radiopharmaceutical uptake. No photopenic defects to suggest cortical scarring.

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DMSA Renal Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

50

MODERN RADIOLOGY

Nuclear

FIGURE 31

MODERN RADIOLOGY

Nuclear Medicine

CHAPTER OUTLINE:

Introduction

Nuclear Medicine

Imaging Principles

Case: Non-functioning right kidney with a likely hypertrophied left kidney

59 years old female. Severe right hydronephrosis with 1.3 cm stone. DMSA to assess renal function.

The right kidney is barely visible above background (yellow arrow) and the faint outline is smaller than the left

kidney. The left kidney is large (blue arrows) likely due to compensatory hypertrophy, with a regular contour and no regions of photopenia to indicate scarring. Split function = right kidney 2.8%, left kidney 97.2%.

Case: Horseshoe Kidney

Horseshoe kidney configuration with no evidence of scarring.

MODERN RAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DMSA Renal Scan

PET Studies

Take-Home Messages

References

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DMSA Renal Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

Usefulness of the test compared with other imaging modalities:

- More accurate assessment of divided renal function compared to a renogram (see next section).
- Other imaging modalities such as ultrasound and CT can assess renal size but cannot quantitatively assess function.

Pyelonephritis may also be identified as defects and mimic scars.

/ Renal: Renogram

Indications:

- Assessment of renal perfusion
- Evaluation of divided renal function
- Possible obstruction
- Assessment of the urinary tract post-surgery, e.g., post pyeloplasty for pelviureteric junction (PUJ) obstruction

Radiopharmaceutical:

- ^{[99m}Tc]Tc- Mercaptoacetyltriglycine (MAG3):
- Undergoes both glomerular filtration and tubular excretion
- ^{[99m}Tc]Tc- Diethylene-triamine-pentaacetate (DTPA):
- Alternative but less used in clinical practice, undergoes glomerular filtration only

Route: Administered intravenously

Image acquisition:

- / Dynamic planar imaging for 30 minutes
- 7 Then static images acquired pre-micturition, post-micturition and delayed 2-hours post-micturition
- Furosemide injected to assess for obstruction timing varies between institution
- / Computer processing of data to provide time activity curve

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Renal: Renogram

PET Studies

Take-Home Messages

References

Normal Case

Time activity curve is a representation of the uptake and excretion of the radiopharmaceutical by the kidneys as a graph.

Renogram has three phases:

A - Vascular (flow phase) - shows blood flow and initial uptake of radiopharmaceutical by the kidneys, usually lasts 30 to 60 seconds (yellow arrow)

B - Cortical transit (tissue-function phase) - radiopharmaceutical concentrates in renal tubules, peaks at 3-5 minutes (pink arrow)

C - Excretory (drainage phase) – downslope in the renogram indicating excretion of radiopharmaceutical by the kidneys. It usually starts at 4-8 minutes after radiotracer injection (purple arrow). Both kidneys show prompt tracer uptake, normal transit, excretion and drainage. The time activity curves are normal. Normal study with no evidence of obstruction.

MODERN RADYOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Renal: Renogram

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 34

Normal [99mTc]Tc- MAG3 Renogram Time Activity Curve

CORE KNOWLEDGE

MODERN RADIOLOGY

Case: Right kidney pelviureteric junction obstruction

CT abdomen and pelvis demonstrated right sided hydronephrosis (yellow arrow). Normal appearance of left kidney (green arrow).

On the renogram there is delayed uptake, cortical transit, excretion and limited drainage of the right kidney demonstrated by the flattened amplitude of

the time-activity curve (green curve, pink arrow). Appearances are in keeping with a very high-grade/ near complete obstruction. The left kidney shows prompt tracer uptake, normal transit, excretion and drainage (red curve, purple arrow). The blue curve represents tracer within the urinary bladder.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Renal: Renogram

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 35 Axial Post Contrast CT

<=>

FIGURE 36

[99mTc]Tc- MAG3 Renogram Time Activity Curve

MODERN RADIOLOGY

CORE KNOWLEDGE

Case: Right kidney pelviureteric junction obstruction

A) In the initial vascular (flow) phase - radiopharmaceutical within the abdominal aorta (red arrow) and left kidney (yellow arrow). No activity demonstrated in the right kidney (green arrow).

B) Cortical transit (tissue-function) phase - radiopharmaceutical concentrates in renal tubules of the left kidney (yellow arrow). Faint rim of cortical uptake around the grossly distended pelvis of the right kidney (green arrow).

C) Excretory (drainage) phase - radiopharmaceutical demonstrated within the left renal pelvis (vellow arrow), ureter (yellow arrow) and bladder (purple arrow) in keeping with excretion of radiopharmaceutical by the left kidneys. Increasing activity within the right kidney cortex (green arrow) but no radiopharmaceutical within the renal pelvis or ureter.

D) Low level activity within the dilated right pelvicalyceal system (green arrow) on the post micturition.

Appearances are in keeping with a very highgrade/near complete obstruction.

D) Post micturition

[99mTc]Tc- MAG3 Renogram Dynamic Study, abdominal aorta (red arrow).

left kidnev (vellow arrow), right kidnev (green arrow), bladder (purple arrow)

C) 8-10 minutes

FIGURE 37

Nuclear Medicine

CHAPTER OUTLINE:

Introduction

Nuclear Medicine **Imaging Principles**

Planar and SPECT

/ Renal: Renogram

PET Studies

Take-Home Messages

References

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Renal: Renogram

PET Studies

Take-Home Messages

References

Test Your Knowledge

Usefulness of the test compared with other imaging modalities:

Dynamic test hence useful for assessment of urine passage and check for high-grade obstruction which can lead to obstructive uropathy and nephropathy. CT and MR urogram demonstrate anatomical abnormality but renogram provides functional assessment helping to determine degree of impaired drainage and split function.

MODERN RAD[§]OLOGY

/ Myocardial Perfusion Imaging

Indications:

- To identify the presence, site and grade the severity of coronary artery disease
- Select patients who will benefit from revascularisation, e.g., PCI/CABG
- Assess response post revascularisation or medical treatment

Radiopharmaceutical:

Technetium-99m labelled Tetrofosmin (Myoview) or Sestamibi - lipophilic cationic agents which passively diffuse and accumulate in the mitochondria of viable myocardial tissue

Route: Administered intravenously

Image acquisition:

- Two components: stress and rest. Depending on institutions performed on same day or separate days
- Rest: Imaging 45-60 minutes post radiopharmaceutical injection
- Stress: Exercise test or pharmaceutical stress agents given prior to radiopharmaceutical. Either adenosine, regadenoson, or dobutamine are used depending on their background medial history and medications.
- SPECT Imaging
- Additional CT component acquired for attenuation correction

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Myocardial Perfusion Imaging

PET Studies

Take-Home Messages

References

>=< FURTHER KNOWLEDGE

DHADMACEUTICAL STRESS ACENT

Pharmaceutical stress agent:

A stress myocardial perfusion scan assesses blood flow to the myocardium under stress.

Stress test can use exercise (e.g., bicycle or treadmill). If patients are unable to exercise, the heart can be stressed by taking a pharmaceutical stress agents that increases heart rate or dilate coronary arteries like physical exercise.

The table lists the main pharmaceutical stress agents and mechanism of action.

MODERN RAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Myocardial Perfusion Imaging

PET Studies

Take-Home Messages

References

Test Your Knowledge

	MECHANISM OF ACTION	PF [.]
Regadenoson	Specific A2A adenosine receptor agonist Vasodilator (direct)	Tak
Adenosine	Nonspecific adenosine receptor agonist Vasodilator (direct)	Tes
Dipyridamole	Prevent the intracellular reuptake and deamination of adenosine Vasodilator (indirect)	
Dobutamine	β1- and β2-receptor agonist Vasodilator (indirect)	

MECHANISM OF ACTION

CORE KNOWLEDGE <=>

Normal Case Example

Both stress and rest images demonstrate normal radiopharmaceutical distribution. Short, horizontal long and vertical long axis represent the different reconstructed SPECT views of the myocardium.

Nuclear Medicine

MODERNRAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine **Imaging Principles**

Planar and SPECT

/ Myocardial Perfusion Imaging

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 38

Normal [99mTc]Tc Myocardial Perfusion Imaging

Case:

68 years old male. Assessment of coronary artery disease. On the stress component, there is severe reduction of tracer uptake at the apex (red arrows) with the rest component demonstrating that this is largely fixed in keeping with an distal left anterior descending infarct.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ Myocardial Perfusion Imaging

PET Studies

Take-Home Messages

References

Test Your Knowledge

Rest images

Stress images

FIGURE 39

[99mTc]Tc Myocardial Perfusion Imaging

62

MODERN RADIOLOGY

STUDIES	USEFULNESS OF THE TEST COMPARED WITH OTHER IMAGING MODALITIES	CHAPTER OUTLINE:
	Functional assessment compared to anatomical information gained from	Introduction
Myocardial Perfusion Imaging (MPI)	coronary angiogram or CT coronary angiogram MPI provides limited quantification of perfusion and limited spatial resolution	Nuclear Medicine Imaging Principles
PET perfusion imaging (Rubidium-82 or	Better spatial resolution and decreased noise compared to SPECT but not	Planar and SPECT Studies
		/ Myocardial Perfusion
Cardiac MRI	High spatial resolution, can perform quantification of perfusion, and avoids ionising radiation. Detailed characterisation of myocardial tissue can be performed but expensive and limited availability.	PET Studies
		Take-Home Messages
CT coronary angiogram	Provides anatomical information by visualising the coronary artery lumen and	References
	assessing coronary artery stenosis but does not provide functional information	Test Your Knowledge
Stress echocardiogram	Widely available, bedside test, inexpensive, however operator dependent, lack of reproducibility	

/ Metaiodobenzylguanidine (MIBG)

Indications:

- Detection, localisation, staging and follow-up of neuroendocrine tumours: Phaeochromocytomas, Neuroblastomas, Carcinoid tumours, etc.
- lodine-131 labelled MIBG is used for treatment of certain neuroendocrine tumours

Route: IV slowly over 4 minutes

Radiopharmaceutical:

- / Iodine-123 labelled with MIBG (meta-iodobenzylguanidine)
- ⁷ MIBG is an analogue of noradrenaline and guanethidine and enters neuroendocrine cells by an active uptake mechanism via the adrenergic transporters and stored in neurosecretory granules

Image acquisition:

- / Early planar 4 hours post injection
- / Delayed planar 24 hours post injection
- +/- SPECT/CT at 24 hours

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ MIBG Scan

PET Studies

Take-Home Messages

References

Normal Case

[123]I-MIBG scan.

Diffuse homogenous uptake within liver and urinary bladder.

Mild homogenous uptake within the salivary glands.

MODERN RAD OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

 Metaiodobenzylguanidine (MIBG)

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 40 Normal [123]]I-MIBG Scan

65

MIBG SPECT/CT

EARLY 4HR WB MIBG 23/06/2022

Case: Left phaeochromocytoma

61 years old female. Left suprarenal mass measuring 5 cm. Indeterminate on CT with no arterial enhancement but functional studies suggest phaeochromocytoma.

EARLY 4HR WB MIBG 23/06/2022

On the whole-body planar imaging, there is intense asymmetric increased MIBG uptake

localising to the left adrenal gland persisting on the 24-hour imaging (yellow arrow).

On the SPECT/CT, there is intense radiopharmaceutical activity anteromedially within a 5 cm left adrenal mass (blue arrows).

24HR WB MIBG 24/06/2022

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

 Metaiodobenzylguanidine (MIBG)

PET Studies

Take-Home Messages

References

Test Your Knowledge

24HR WB MIBG 24/06/2022

SPECT/CT

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

 Metaiodobenzylguanidine (MIBG)

PET Studies

Take-Home Messages

References

Test Your Knowledge

Usefulness of the test compared with other imaging modalities:

- Generally considered an accurate test for visualisation of neuroendocrine tumours
- Important functional study when findings are suspected on conventional anatomic imaging (CT/MRI)
- MIBG is useful for suspected adrenal and abdominal tumours versus [⁶⁸Ga]Ga-DOTA peptide PET/CT for extra abdominal neuroendocrine tumours (see PET study section)

/ DaT Scan

Indications:

- Diagnosis of Parkinson's disease and other neurodegenerative parkinsonian syndromes (e.g., dementia with Lewy bodies, progressive supranuclear palsy, and multiple system atrophy)
- Differentiating between dementia with Lewy bodies and other dementias
- Differentiating between parkinsonism due to presynaptic degenerative dopamine deficiency and other forms of parkinsonism, e.g., drug induced, psychogenic or vascular

Route: Administered intravenously

Radiopharmaceutical:

- Iodine-123 DaTSCAN (Ioflupane or FP-CIT) administered intravenously
- Bind to presynaptic dopamine active transporters within the nigrostriatal pathway
- Loss of nigrostriatal dopaminergic nerve terminals in patients with parkinsonian syndromes. Uptake of the radiopharmaceutical corresponds to the integrity of these transporters

Image acquisition:

- Imaging is performed 3-6 hours post-injection
- Patient positioned supine in a headrest
- Trans axial tomographic slices acquired

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DaT Scan

PET Studies

Take-Home Messages

References

Normal Case

Normal radiopharmaceutical uptake within bilateral caudate and putamina; the basal ganglia nuclei have a normal 'comma' morphology (blue circle).

MODERN RAD OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DaT Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 42

Axial SPECT images from DaT Scan

MODERN RAD OLOGY

Case: Parkinson's disease or a parkinsonian syndrome

72 years old male. Left hand tremor predominantly at rest, then began to involve right hand more recently.

Significantly reduced uptake of radiopharmaceutical in the bilateral putamina (blue arrow), worse on the right, with some reduction in uptake in the right caudate head (green arrow). Both basal ganglia are shaped like a dot rather than a comma; the "dot sign".

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DaT Scan

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 43 Axial SPECT images from DaT Scan

Usefulness of the test compared with other imaging modalities:

- Used synergistically with other tests depending on clinical indication, e.g., MRI brain or FDG PET/CT.
- Only readily available test to assess for presynaptic dopaminergic neuronal loss making it useful for its primary indication.

- If there is concern over vascular parkinsonism (especially if there are clinical risk factors or unilateral abnormal findings on a DaT scan), an MRI would be helpful to assess for an ipsilateral infarct.
- / MRI or perhaps even FDG PET/CT may be used together with DaT scan when trying to discriminate causes of dementia.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

/ DaT Scan

PET Studies

Take-Home Messages

References

MODERN RADIOLOGY

/ Nitralear solutione

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

/ PET Studies
/ FDG PET Scan

Indications:

- Provides a measure of glucose consumption and mainly used to detect malignancies
- Oncology Malignancy staging and restaging, determining metabolic activity of cancer, monitoring the effects of therapy, detecting tumout recurrence, and radiation therapy planning
- Inflammation/Infection Fever of unknown origin and vasculitis
- Neurology Dementia and localisation of seizure foci
- Cardiology Cardiac infection and inflammation, assessment of myocardial hibernation

FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0, 2015

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

Test Your Knowledge

MODERN RADIOLOGY

Radiopharmaceutical:

- Fluorine-18 labelled fluorodeoxyglucose (FDG), Glucose analogue
- Cyclotron produced
- Half-life 110 minutes
- / FDG is metabolised to FDG-6-Phosphate. FDG enters cells via GLUT transporters similar to glucose but accumulates intracellularly after initial phosphorylation as it cannot undergo further metabolism. The higher the metabolic activity of the cells, the higher the FDG uptake. Malignant cells increase GLUT and hexokinase activity

Route: Administered intravenously

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

MODERN RADIOLOGY

Image acquisition:

- Fast 4-6 hours prior to scan optimise glucose and insulin levels
- No intense physical exercise 24 prior to scan reduce muscle FDG uptake
- Patient should rest in a room for a period of 30 min to 1 hour reduce muscle FDG uptake
- Patient should void before start of images reduced FDG concentration in urinary bladder
- Imaging is performed 60 minutes post-injection
- Images acquired depending on protocols; either whole body (From the top of the head through the feet), torso imaging (from the top of the head/base of skull to mid-thigh)
- Combined with low dose CT for attenuation correction and localisation

FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0, 2015

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

>=< FURTHER KNOWLEDGE

Blood glucose and insulin

- / Both glucose and FDG are actively transported into cells, so glucose levels in blood will affect the uptake of FDG.
- High blood glucose levels will result in lower uptake of FDG.
- High insulin levels would cause increased
 FDG uptake into muscles and subcutaneous tissue
- It is important that blood glucose levels are within a normal range before [18F] FDG administration.

- Patients must fast for 4-6 hours prior to a FDG PET scan.
- / The preparation for diabetic patients is complicated and depends on the type of medications and if on insulin.
- A recent medical history is vital prior to imaging.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

Test Your Knowledge

MODERN RADIOLOGY

>=< FURTHER KNOWLEDGE

SUV:

- The standardised uptake value (SUV) is a semiquantitative measure used to quantify activity on PET/CT scans.
 - SUV=<u>radiopharmaceutical concentration</u> injected activity/patient weight x 1000

Maximum SUV of a region of interest is used to assess lesions (SUVmax) which can be compared to background activity in normal tissues (e.g., liver or mediastinal blood pool).

MODERN RAD OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

Test Your Knowledge

SUV _{max}= 9.2

The green circle demonstrates a region of interest drawn around the focus demonstrating high tracer uptake within the liver allowing for SUV measurement.

FIGURE 45

Axial fused and PET images from [18F]FDG PET/CT Scan

	blood glucose	CHAPTER OUTLINE:
Factors affecting SUV High SUV Low SUV	insulin levels at time of injection time period between FDG administration and scanning	Introduction
	most high-grade malignancies, infectious and inflammatory processes	Nuclear Medicine Imaging Principles
		Planar and SPECT Studies
	specific malignancies (prostate, hepatocellular carcinoma, lung adenocarcinoma spectrum lesions, neuroendocrine tumours) and histological subtypes (low grade, mucinous/lobular tumours), smaller tumours (particularly below 6 mm)	PET Studies
		/ FDG PET
		Take-Home Messages

References

>=< FURTHER KNOWLEDGE

Normal Case Example

Normal Physiological Uptake

- / Brain: Intense FDG uptake as glucose is main substrate for metabolism.
- / Urinary tract (kidneys, ureters and bladder): High uptake as excretion route is renal.
- Myocardium: variable and dependent on insulin/glucose levels and the patient's fasting status (low post fast).
 Myocardium usually prefers fatty acid for its metabolism.
- Gastrointestinal tract: Uptake is variable, diffuse mild to moderate uptake is normal. Metformin can increase FDG uptake.
- Liver: Low/moderate, diffuse homogeneous uptake.
- Salivary glands, tonsils, thyroid: Mild to moderate symmetric uptake.
- Muscles: FDG uptake is usually low. FDG accumulation in muscles can be increased following exercise and with elevated insulin.
- **Brown fat:** Metabolically active adipose tissue usually located within supraclavicular, axillary, mediastinal and paravertebral regions, observed if the patient is cold and more so in younger patients.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

Test Your Knowledge

FIGURE 46 MIP image from [¹⁸F]FDG PET Scan

MODERN RAD OLOGY

Case: Lung cancer with osseous metastatic disease

82 years old male. CT Thorax demonstrated solitary pulmonary nodule.

A spiculated left apical nodule demonstrates (green arrow) increased metabolic activity (SUVmax 6.3). In addition, there is a metabolically active lytic lesion in the right 8th rib consistent with a bone metastasis (yellow arrow). No metabolic active lymph nodes demonstrated.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

Test Your Knowledge

FIGURE 47 [¹⁸F]FDG PET/CT Scan

Case: Diffuse Large B Cell Lymphoma

The MIP image demonstrates multiple metabolically active foci corresponding to multiple intensely metabolically active lymph nodes above and below the diaphragm (yellow arrow). The axial images show paratracheal (purple arrow), prevascular (green arrow), internal thoracic (red arrow), axillary (blue arrow), para-aortic (pink arrow), and mesenteric (brown arrow) nodal disease.

MODERN RAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

Case: Non Hodgkin Lymphoma pre and post 6 cycles of chemotherapy

The left sided images demonstrates multiple metabolically active foci corresponding to multiple intensely metabolically active lymph nodes within the left neck (red arrow) and mediastinum (green arrow) which have resolved the subsequent right sided images post 6 cycle of chemotherapy.

MODERN RAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ FDG PET

Take-Home Messages

References

Test Your Knowledge

FIGURE 49 [¹⁸F]FDG PET/ CT Scan

82

>=< FURTHER KNOWLEDGE

Deauville scale

5-point scale.

Used in the initial staging and treatment response assessment of Hodgkin lymphoma and certain non-Hodgkin lymphomas including the diffuse large B cellular lymphoma.

Scale:

1	No uptake, i.e., indiscernible from background level or no residual uptake	Take-I
2	Uptake ≤ mediastinal blood pool (MBP)	Refere
3	Uptake > MBP ≤ liver	Test Yo
4	Uptake moderately higher than liver	
5	Uptake markedly greater than liver and/or new lesions	

Grade visual assessment of [18F]FDG uptake comparing with two reference points: medi-

astinal blood pool and the liver.

MODERNRAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine **Imaging Principles**

Planar and SPECT Studies

PET Studies

/ FDG PET

Home Messages

ences

our Knowledge

TABLE 10

Deauville scale

PROS +	CONS -	CHAPTER OUTLINE:
	False positives in oncology scans: infectious and inflammatory processes, and sarcoid-like reaction in malignancy, ureteric activity mimicking lymph nodes	Introduction
Anatomical and functional imaging on a single study (however the CT component is a low-dose study compared to standard CT imaging)		Nuclear Medicine Imaging Principles
Detects metastatic disease that would have been	False negatives: Histology (low grade, necrotic or mucinous tumours, certain cancers such as prostate, hepatocellular carcinoma), small tumours	Planar and SPECT Studies
missed on conventional CT/MRI Imaging which is		PET Studies
crucial for management decisions		/ FDG PET
		Take-Home Messages

References

MODERN RADIOLOGY

/ PSMA PET Scan

Indications:

- Staging of high-risk primary prostate cancer prior to prostatectomy
- Detectable PSA post-prostatectomy in the setting of persistent elevation of PSA (≥ 0.2 ng/ml) post prostatectomy, to assess for residual or otherwise occult disease, not identified pre-operatively
- Localisation of disease in biochemical recurrence after radical prostatectomy, and radial radiotherapy if it will affect subsequent patient management decisions
- Patient selection for Lutetium-177 labelled PSMA radionuclide therapy in metastatic castration-resistant prostate cancer

Route: Administered intravenously

Radiopharmaceutical:

- Prostate-specific membrane antigen (PSMA) a transmembrane glycoprotein that is expressed on the cell surface in normal prostate tissue
- PSMA expression is increased in prostate cancer especially higher-grade tumours
- PSMA can be labelled with Gallium-68 (Ga68), a positron emitter. There are radiotracers such as Fluorine-18 which can be labelled to PSMA with similar biodistribution but difference in binding affinities and nonspecific uptake.
- Eluted from a Germanium-68 (68Ge)/68Ga generator
- Half-life of 68 minutes

Image acquisition:

- Imaging is performed approximately 45–75 minutes after radiopharmaceutical administration
- / PET images acquired from the pelvis to the head to minimise misregistration between the CT and PET components of the study due to filling of the bladder during acquisition

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ PSMA PET Scan

Take-Home Messages

References

68Ga PSMA PET Scan – Normal Distribution

Normal Physiological Uptake is related to PSMA expression tissues and radiotracer excretion.

- Salivary glands: Physiological uptake related to PSMA expression
- / Liver and spleen: Moderate, diffuse homogeneous uptake
- Pancreas and small bowel loops, particularly duodenum: Increased radiopharmaceutical uptake PSMA expression for dietary folate absorption
- / Urinary tract (kidneys, ureters and bladder):High activity as excretion route is renal

Salivary glands

Liver and

spleen

Pancreas &

small bowel

Kidneys and

bladder (urinary excretion)

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ PSMA PET Scan

Take-Home Messages

References

Test Your Knowledge

FIGURE 50 MIP image from [68Ga]Ga-PSMA-11 PET Scan

Case: Prostate cancer recurrence with lymph node and osseous metastatic disease

76 years old male. Rising PSA 129 post previous radiotherapy for prostate cancer.

PSMA avid disease in the prostate (green arrow) with small volume right inguinal and pelvic nodal disease (purple arrow), as well as multiple bone metastases (yellow arrow).

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ PSMA PET Scan

Take-Home Messages

References

Test Your Knowledge

FIGURE 51 [68Ga]Ga-PSMA-11 PET/CT Scan

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ PSMA PET Scan

Take-Home Messages

References

Test Your Knowledge

Usefulness of the test compared with other imaging modalities:

Pelvic MRI is superior to other imaging modalities for local regional staging of prostate cancer.

[68Ga]Ga- PSMA PET/CT allows comprehensive metastatic disease assessment of the prostate, lymph nodes, soft tissues and bones. High sensitivity of PSMA PET, allows identification of small-volume disease, compared with conventional imaging.

Other PET radiopharmaceuticals for Prostate cancer include Fluciclovine, and radiolabelled Choline (Fluorine-18 or Carbon-11). Evidence suggest PSMA PET has superior diagnostic performance compared to the above pharmaceuticals.

False negative - 10% prostate cancer can be PSMA negative.

False positives:

- / Infection/inflammatory process, e.g., prostatitis
- / Bone conditions, e.g., fracture, Paget's disease, fibrous dysplasia
- / Benign tumours, e.g., adrenal adenoma
- Other malignancies expressing PSMA, e.g., breast, lung, colorectal

/ DOTATATE PET Scan

Indications:

- Neuroendocrine tumours (NET) localisation of primary tumour and detect sites of metastatic disease (staging)
- Follow-up imaging to detect residual, recurrent or progressive disease (restaging)
- Selection of patients for somatostatin receptor-targeted peptide receptor radionuclide therapy
- Also used for assessment of pheochromocytoma, paraganglioma, neuroblastoma, and meningioma

Procedure guidelines for PET/CT tumour imaging with 68Ga-DO-TA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE, 2010

Route: Administered intravenously

Radiopharmaceutical:

- Somatostatin receptors (SSTRs) are present on the cell surface of neuroendocrine cells
- DOTATATE is a somatostatin analogue, binds to SSTR type 2
- Gallium-68 is labelled with DOTATATE. Other pharmaceutical including DOTATOC and DOTA-NOC which have affinity for different somatostatin receptors

Image acquisition:

Imaging is performed approximately 45–60 minutes after radiopharmaceutical injection

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ DOTATATE PET Scan

Take-Home Messages

References

>=< FURTHER KNOWLEDGE

Normal Case

Normal Physiological Uptake

Related to **specific receptor binding** and **non-specific tissue handling of the peptide**.

- Spleen: Highest intensity physiologic uptake, SSTR expression
- Kidneys: Glomeruler filtration, partially reabsorption in the proximal convoluted tubule, resulting in high activity in the collecting system and bladder, retained activity in the renal parenchyma
- Pituitary, thyroid and adrenal glands: SSTR expression
- Liver: Moderate, diffuse homogeneous uptake
- Salivary glands: SSTR expression
- GI Tract: Variable physiologic radiopharmaceutical uptake

FIGURE 52

MIP image from [68Ga]Ga-DOTATATE PET Scan

Spleen and Liver

Bowel

Adrenal Gland

Kidneys and bladder

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies
/ DOTATATE PET Scan

Take-Home Messages

References

Case: Pancreatic neuroendocrine tumour

42 years old male. Lesion within the pancreas on CT and MRI.

A lesion at the neck of the pancreas demonstrating peripheral arterial enhancement with a small low density/cystic focus posteriorly (yellow arrow). The lesion demonstrates diffuse intense increased DOTATATE uptake in keeping with a neuroendocrine tumour (green arrow).

FIGURE 53 Axial image from Post Contrast CT

MODERN RAD[§]OLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies / DOTATATE PET Scan Take-Home Messages References

Test Your Knowledge

FIGURE 54 ^{[68}Ga]Ga- DOTATATE PET Scan

Usefulness of the test compared with other imaging modalities:

- Multiple studies have shown [⁶⁸Ga]Ga- DOTATATE PET/CT to be more accurate than conventional imaging, including octreotide SPECT/CT and contrast material–enhanced CT, in the diagnosis of low- and intermediate-grade NETs.
- Most NETs have low uptake on [¹⁸F]FDG PET/CT scan. It is used in the staging or restaging (including pre-operative assessments) of selected patients with poorly differentiated high-grade NETs.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

/ DOTATATE PET Scan

Take-Home Messages

References

/ Take-Home Messages

- Nuclear Medicine is a specialty allowing functional assessment beyond anatomical information provided by other imaging modalities.
- A radiopharmaceutical combines a radionuclide and pharmaceutical, enabling targeting of different organs and physiological processes.
- ⁷ Three major imaging modalities used in nuclear medicine are planar, SPECT and PET.

- SPECT and PET imaging can be combined with CT/MRI for attenuation correction and anatomical localisation.
- / Techentium-99m is the most commonly used radiopharmaceutical in planar and SPECT imaging.
- / Fluorine-18 FDG is the most commonly used radiopharmaceutical in PET imaging.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

- / References
- Bajc M, Schümichen C, Grüning T, et al (2019). EANM guideline for ventilation/perfusion single-photon emission computed tomography (SPECT) for diagnosis of pulmonary embolism and beyond. Eur J Nucl Med Mol Imaging; 46: 2429–2451.
- Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al (2015) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. Feb;42(2):328–54.
- Broski, S. M., Hunt, C. H., Johnson, G. B., Morreale, R. F., Lowe, V. J., & Peller, P. J. (2014). Structural and functional imaging in parkinsonian syndromes. Radiographics, 34(5), 1273-1292.
- Derenoncourt, P. R., Felder, G. J., Royal, H. D., Bhalla, S., Lang, J. A., Matesan, M. C., & Itani, M. (2021). Ventilation-perfusion scan: a primer for practicing radiologists. Radiographics, 41(7), 2047-2070.
- Hofman, M. S., Hicks, R. J., Maurer, T., & Eiber, M. (2018). Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics, 38(1), 200-217.
- Hofman, M. S., Lau, W. E., & Hicks, R. J. (2015). Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics, 35(2), 500-516.
- Lim, M. M. D., Gnerre, J., & Gerard, P. (2018). Mechanisms of uptake of common radiopharmaceuticals radiographics fundamentals| online presentation. Radiographics, 38(5), 1550-1551.

- / Panda, A., Homb, A. C., Krumm, P., Nikolaou, K., Huang, S. S., Jaber, W., ... & Rajiah, P. S. (2022). Cardiac Nuclear Medicine: Techniques, Applications, and Imaging Findings. RadioGraphics, 43(1), e220027.
- / Salerno, M., & Beller, G. A. (2009). Noninvasive assessment of myocardial perfusion. Circulation: Cardiovascular Imaging, 2(5), 412-424.
- / Virgolini, I.; Ambrosini, V.; Bomanji, J.B.; Baum, R.P.; Fanti, S.; Gabriel, M.; Papathanasiou, N.D.; Pepe, G.; Oyen, W.; De Cristoforo, C.; et al (2010) Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTAconjugated peptides: 68Ga-DO-TA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTATATE. Eur. J. Nucl. Med. Mol. Imaging, 37, 2004–2010.
- Wallitt, K., Yusuf, S., Soneji, N., Khan, S. R., Win, Z., & Barwick, T. D. (2018). PET/CT in oncologic imaging of nodal disease: pearls and pitfalls: RadioGraphics fundamentals| online presentation. Radiographics, 38(2), 564-56

MODERN RADIOLOGY

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

<?> QUESTION

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

What type of radiation is used in Planar and SPECT imaging?

- \Box Alpha radiation
- □ X-ray
- □ Ultraviolet
- □ Gamma radiation

<?> ANSWER

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

What type of radiation is used in Planar and SPECT imaging?

- □ Alpha radiation
- □ X-ray
- □ Ultraviolet
- Gamma radiation

Planar and SPECT imaging uses gamma radiation. Alpha radiation is used in radiotherapy and certain radionuclide therapies. X-ray is used for conventional radiology imaging techniques including plain film radiography, fluoroscopy and computed tomography. Ultraviolet has no role in imaging studies.

/ Test Your Knowledge

<?> QUESTION

What is the half-life of Technetium-99m?

- □ 110 minutes
- □ 6 hours
- □ 68 minutes
- □ 8 days

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

<?> ANSWER

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

What is the half-life of Technetium-99m?

- □ 110 minutes
- 6 hours
- □ 68 minutes
- □ 8 days

The half-life of Technetium-99m is 6 hours. This makes for a good radiopharmaceutical because it is long enough to be able to transport but not too long that the patient is radioactive for an extended period of time.

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

st Your Knowledge

<?> QUESTION

- Technetium-99m is used in the assessment of bone metastasis. Which of the following cancers is [⁹⁹mTc]Tc- HDP used in the assessment of bone metastasis?
 - □ Prostate
 - □ Lung
 - □ Renal
 - □ Thyroid

<?> ANSWER

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Technetium-99m is used in the assessment of bone metastasis. Which of the following cancers is [⁹⁹mTc]Tc- HDP used in the assessment of bone metastasis?

- Prostate
- Lung
- Renal
- □ Thyroid

[⁹⁹mTc]Tc- HDP is useful for osteoblastic metastasis such as prostate and breast (can be mixed). Lytic/osteoclastic bone metastases are not evident and may even appear as photopenic regions. <?> QUESTION

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

36 years old female patient presents with clinical and biochemical symptoms of hyperthyroidism. As part of the investigation, she had a [⁹⁹mTc]Tc-pertechnetate thyroid scan (see Figure 55). What diagnosis is demonstrated in the study?

- □ Toxic multinodular goitre
- □ Autonomous toxic nodule
- □ Subacute thyroiditis

FIGURE 55 [⁹⁹mTc]Tc Thyroid scan

<?> ANSWER

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine **Imaging Principles**

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 55 [99mTc]Tc Thyroid scan

36 years old female patient presents with clinical and biochemical symptoms of hyperthyroidism. As part of the investigation, she had a [99mTc]Tc-pertechnetate thyroid scan (see Figure 55). What diagnosis is demonstrated in the study?

Graves' disease | |

Toxic multinodular goitre

- Autonomous toxic nodule
- Subacute thyroiditis

There is a rounded, focal tracer activity centred on the mid right lobe of the thyroid. Appearances are keeping with autonomous nodule in the right lobe of the thyroid.

/ Test Your Knowledge

<?> QUESTION

- Which of the following is an indication for renal DMSA?
 - □ Assessment of renal scarring
 - □ Calculation of e-GFR
 - □ Identify renal obstruction
 - □ Corticomedullary differentiation

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

/ Test Your Knowledge

<?> ANSWER

- Which of the following is an indication for renal DMSA?
 - Assessment of renal scarring
 - □ Calculation of e-GFR
 - □ Identify renal obstruction
 - □ Corticomedullary differentiation

DMSA scans allow detection of focal renal parenchymal abnormalities including assessment of renal scarring. [99mTc]Tc- DTPA is used for eGFR calculation. MAG3 renogram plays crucial role in confirming renal obstruction alongside other imaging modalities such as US and CT. US, CT, and MRI demonstrate the anatomy including corticomedullary differentiation of the kidneys.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

<?> QUESTION

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Radiation dose to maternal breast tissue is greater for CTPA compared to V/Q scan.

□ True

False

<?> ANSWER

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Radiation dose to maternal breast tissue is greater for CTPA compared to V/Q scan.

True

☐ False

Typically, radiation dose to maternal breast tissue is greater for CTPA compared to V/Q scan; doses to foetus are equivalent.

/ Test Your Knowledge

<?> QUESTION

Figure 56 demonstrates a left pheochromocytoma. What nuclear medicine study do these images represent?

- □ [⁶⁸Ga]Ga-PSMA
- □ [¹⁸F]FDG
- □ [¹²³I]I- MIBG
- [⁹⁹mTc]Tc-pertechnetate

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

FIGURE 56

NM Study
<?> ANSWER

Figure 56 demonstrates a left pheochromocytoma. What nuclear medicine study do these images represent?

- □ [⁶⁸Ga]Ga-PSMA
- □ [¹⁸F]FDG
- [123]]- MIBG
- □ [⁹⁹mTc]Tc- pertechnetate

Figure 53 corresponds to images from [123I]I- MIBG study. [68Ga]Ga- PSMA is used for metastatic prostate cancer assessment. [18F]FDG is widely used in oncology, neuroradiology and cardiology. [99mTc]Tc- pertechnetate is used for thyroid scans.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

<?> QUESTION

Which of the images represents an FDG PET study?

А

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Which of the images represents an FDG PET study?

LT

[⁹⁹mTc]Tc –HDP whole body bone scan

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

<?> QUESTION

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Which radionuclide is PSMA labelled for the detection of metastatic disease in prostate cancer

- Gallium-68
- □ Rubidium- 82
- □ lodine-123
- □ Technetium-99m

<?> ANSWER

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Which radionuclide is PSMA labelled for the detection of metastatic disease in prostate cancer

- Gallium-68 Rubidium- 82
- □ lodine-123
- □ Technetium-99m

Rubidium-82 is used in myocardial perfusion imaging. Iodine-123 is the commonly used in thyroid imaging. Technetium-99m is the most widely used radionuclide in planar and SPECT imaging.

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

- <?> QUESTION
 - demonstrate normal physiological update in DOTATATE PET imaging?
 - □ Brain
 - □ Heart
 - □ Spleen
 - □ Pancreas

<?> ANSWER

/ Test Your Knowledge

CHAPTER OUTLINE:

Introduction

Nuclear Medicine Imaging Principles

Planar and SPECT Studies

PET Studies

Take-Home Messages

References

Test Your Knowledge

Which of the following organs demonstrate normal physiological update in DOTATATE PET imaging?

- □ Brain
- □ Heart
- Spleen
- Pancreas

Normal physiological uptake in DOTATATE PET scan is related to specific receptor binding and nonspecific tissue handling of the peptide. Spleen demonstrates highest intensity physiologic uptake due to SSTR expression. Other organs with normal physiological uptake include kidneys, pituitary, thyroid, adrenal glands, liver, salivary glands and GI tract.

All material used (including intellectual property and illustration elements) either originates from the authors, the authors were entitled to use the material by applicable law or have obtained a transferable license from the copyright holder.