Biomarkers Cardiovascular

Cardiovascular CT

Biomarker Acquisition Modality Acquisition requirements Extracting biomarker (Reading/Algorithm) Target Level of evidence References Evidence Issues
Calcium score (Agatston Score, calcium volume) CT ECG triggered non enhanced CT scan Semiautomatic quantification stratification of global cardiovascular risk for asymptomatic patients 1 [1-5!] Substantial Standardization of Agatston score obtained from contrast-enhanced scans missing. Not capable to distinguish from localized amount or dispersed 
Coronary stenoses (luminal narrowing, segment involved score) CT ECG triggered contrast enhanced CT coronary angiography Visual assessment, Semiautomatic quantification Assessment of coronary artery disease severity 1 [3!, 6-11!] Substantial Observer variability of visual assessment, particularly in the 50-70% range; Blooming effect (overestimation of high calcified plaques)
Suboptimal correlation with subtending haemodynamic significance
Visual assessment of coronary plaque density (calcified, noncalcified, mixed) CT ECG triggered contrast enhanced CT coronary angiography Visual assessment Assessment of coronary artery disease severity and risk of future myocardial infarction 2 - 3 [12-15!] Poor Observer variability. Variability of research study findings. Potential HU variability across centers due to difference in kV values
Visual assessment of high risk plaque features (positive remodelling, low attenuation plaque, spotty calcification, napkin ring sign) CT ECG triggered contrast enhanced CT coronary angiography Visual assessment Assessment of coronary artery disease severity and risk of future myocardial infarction 2 [12-15!] Moderate Observer variability. Commonly identified but only some lead to myocardial infarction. Potential HU variability across centers due to difference in kV values
Quantitative assessment of coronary plaque burden (total, non calcified, calcified, low attenuation, and other plaque volume and burden) (segment involved score, Leaman score) CT ECG triggered contrast enhanced CT coronary angiography Semi-quantitative assessment Assessment of coronary artery disease severity and risk of future myocardial infarction (likelihood of being revascularized on invasive coronary angiography, risk of future myocardial infarction or other major adverse cardiac events) 2 [16-22!] Moderate Variability between softwares. Blooming effect (overestimation of high calcified plaques)
Suboptimal correlation with subtending haemodynamic significance
CT-FFR CT ECG triggered contrast enhanced CT coronary angiography quantitative quantification of coronary artery disease severity. (hemodynamic significance of stenosis) 2 [23-30!] substantial Limited availability due to pay-per-service model; avilable at the moment only from one provider for clinical use
CT-ECV CT non-contrast and late contrast-enhanced ECG triggered CT  semiquantitative quantification of myocardial fibrosis 3 [31-34!] low latest CT scanner generation required; increased radiation dose of the exam for the additional late phase; dedicated software analysis required
LV/RV ventricular function (ESV, EDV, EF) CT ECG triggered contrast enhanced CT coronary angiography quantitative fundamental information about ventricular function and disease severity in all cardiac disorders 2 [35-41!] moderate increased radiation dose since images have to be obtained during the entire cardiac cycle
Myocardial wall, thickness and mass CT ECG gated CT scan including images from the enddiastole quantitive diagnosis of ventricular hypertrophy 1 [42-43!] substantial measurement has to be obtained from real end- diastole
Trabeculation index CT ECG gated CT scan including images from the enddiastole semi-quantitative indicator for non-compaction cardiomyopathy and predictor for cardiac events 3 [44-46!] poor Suboptimal inter-technique agreement
Aortic valve calcification CT ECG triggered non enhanced CT scan quantitive risk estimation and outcome prediction in aortic vavluar disease 2 [47-54!] moedrate exact discrimination from coronary and aortic calcifications required; calculation is technically challenging if concomitant high-grade coronary sclerosis is present
Aortic valve orifice area CT ECG triggered Contrast enhanced CT aortic angiography quantitive quantification of aortic valve disease (severity of stenosis and regurgitation) 2-3 [55-57!] moderate  systolic (aortic stenosis) and daistolc (aortic regurgitation) pahse images required; Blooming effect of cusps calcification (difficult to depict valve orifice when calcifications are severe)
Aortic annulus (maximum, minimum and average diameter, perimeter, area) CT ECG triggered Contrast enhanced CT aortic angiography quantitive planing of transarterial aortic valve repair (TAVR) 1-2 [47!; 58!] substantial exact double angulation required
Aorta diameter CT Contrast enhanced CT aortic angiography, for the ascending aorta: ECG triggered Contrast enhanced CT aortic angiography quantitative diagnosis and quantification of aortic dilatation / aneurysm 1 [59-61!] Substantial accurate measurements required plane perpendicular to the vessel axis
Pericardial thickness and calcification CT measured on noncontrast cardiac CT quantitative localization and characterization of various pericardial lesions, including effusion, constrictive pericarditis and pericardial thickening, pericardial masses, and congenital anomalies such as partial or complete absence of the pericardium. 2-3 [63!] low Observer variability. Variability of research study findings.
Epicardial fat volume CT measured on noncontrast cardiac CT  quantitative predict the presence and severity of obstructive CAD, ​​ the onset of arrhythmic complications such as AF or Heart Failure with preserved ejection fraction  [64!; 65! moderate Time consuming post-processing (few dedicated software)
Pericoronary fat volume CT ECG triggered non enhanced CT scan  Visual assessment / semiquantitative  PCAT volume is strongly and independently associated with culprit lesions 2-3 [66!; 67!] Poor Time consuming post-processing (few dedicated software)
Pericoronary adipose tissue attenuation CT ECG triggered non enhanced CT scan quantitative PCAT radiodensity is increased according to underlying inflammation or fat browning 2 -3  [68-71! Poor Time consuming post-processing,
myocardial perfusion CT dynamic CT perfusion after pharmacological stress  semiquantitative assessment of lesion dependent ischemia 1-2 [72-75!] substantial increased radiation dose due to dyncamic perfusion as add on to CT angiography
  1. Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, et al. Coronary artery calcification: pathophysiology, epidemiology, imaging methods,
    and clinical implications. A statement for health professionals from the American Heart Association. Writing Group. Circulation 1996;94:1175–92.
  2. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary-artery calcium using ultrafast computed-tomography. J Am College Cardiol 1990;15:827–32.
  3. Knuuti J , Wijns W , Saraste A , Capodanno D , Barbato E , Funck-Brentano C , et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020;41:407–77.
  4. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
    Guideline on the Management of Blood Cholesterol: executive summary: a report of the American College of Cardiology/American Heart Association Task
    Force on Clinical Practice Guidelines. Circulation 2019;139:e1046–e1e81
  5. Association of coronary artery calcium score with qualitatively and quantitatively assessed adverse plaque on coronary CT angiography in the SCOT-HEART trial.
    Osborne-Grinter M, Kwiecinski J, Doris M, McElhinney P, Cadet S, Adamson PD, Moss AJ, Alam S, Hunter A, Shah ASV, Mills NL, Pawade T, Wang C, Weir-McCall JR, Roditi G, van Beek EJR, Shaw LJ, Nicol ED, Berman D, Slomka PJ, Newby DE, Dweck MR, Dey D, Williams MC. Eur Heart J Cardiovasc Imaging. 2021 Sep 16
  6. Current Evidence and Recommendations for Coronary CTA First in Evaluation of Stable Coronary Artery Disease. Poon M, Lesser JR, Biga C, Blankstein R, Kramer CM, Min JK, Noack PS, Farrow C, Hoffman U, Murillo J, Nieman K, Shaw LJ. J Am Coll Cardiol. 2020 Sep 15;76(11):1358-1362. doi: 10.1016/j.jacc.2020.06.078.
  7. CT or Invasive Coronary Angiography in Stable Chest Pain. DISCHARGE Trial Group, Maurovich-Horvat P, Bosserdt M, Kofoed KF, Rieckmann N, Benedek T, Donnelly P, Rodriguez-Palomares J, Erglis A, Štěchovský C, Šakalyte G, Čemerlić Adić N, Gutberlet M, Dodd JD, Diez I, Davis G, Zimmermann E, Kępka C, Vidakovic R, Francone M, Ilnicka-Suckiel M, Plank F, Knuuti J, Faria R, Schröder S, Berry C, Saba L, Ruzsics B, Kubiak C, Gutierrez-Ibarluzea I, Schultz Hansen K, Müller-Nordhorn J, Merkely B, Knudsen AD, Benedek I, Orr C, Xavier Valente F, Zvaigzne L, Suchánek V, Zajančkauskiene L, Adić F, Woinke M, Hensey M, Lecumberri I, Thwaite E, Laule M, Kruk M, Neskovic AN, Mancone M, Kuśmierz D, Feuchtner G, Pietilä M, Gama Ribeiro V, Drosch T, Delles C, Matta G, Fisher M, Szilveszter B, Larsen L, Ratiu M, Kelly S, Garcia Del Blanco B, Rubio A, Drobni ZD, Jurlander B, Rodean I, Regan S, Cuéllar Calabria H, Boussoussou M, Engstrøm T, Hodas R, Napp AE, Haase R, Feger S, Serna-Higuita LM, Neumann K, Dreger H, Rief M, Wieske V, Estrella M, Martus P, Dewey M. N Engl J Med. 2022 Apr 28;386(17):1591-1602.
  8. Newby DE, Adamson PD, Berry C, et al. Coronary CT and 5-year risk of myocardial infarction. N Engl J Med 2018;379:924–33.
  9. Douglas PS, Hoffman U, Patet MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 2015;372: 1291–300.
  10. Moss AJ, Williams MC, Newby DE, Nicol ED. The update NICE guidelines: cardiac CT as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep 2017; 10:15.
  11. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. SCOT-HEART Investigators, Newby DE, Adamson PD, Berry C, Boon NA, Dweck MR, Flather M, Forbes J, Hunter A, Lewis S, MacLean S, Mills NL, Norrie J, Roditi G, Shah ASV, Timmis AD, van Beek EJR, Williams MC. N Engl J Med. 2018 Sep 6;379(10):924-933.
  12. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, Cadet S, Adamson PD, Moss AJ, Alam S, Hunter A, Shah ASV, Mills NL, Pawade T, Wang C, Weir McCall J, Bonnici-Mallia M, Murrills C, Roditi G, van Beek EJR, Shaw LJ, Nicol ED, Berman DS, Slomka PJ, Newby DE, Dweck MR, Dey D.
    Circulation. 2020 May 5;141(18):1452-1462. doi: 10.1161/CIRCULATIONAHA.119.044720. Epub 2020 Mar 16.
  13. Association of plaque calcification pattern and attenuation with instability features and coronary stenosis and calcification grade. Pugliese L, Spiritigliozzi L, Di Tosto F, Ricci F, Cavallo AU, Di Donna C, De Stasio V, Presicce M, Benelli L, D’Errico F, Pasqualetto M, Floris R, Chiocchi M. Atherosclerosis. 2020 Oct;311:150-157.
  14. Association of coronary artery calcium score with qualitatively and quantitatively assessed adverse plaque on coronary CT angiography in the SCOT-HEART trial.
    Osborne-Grinter M, Kwiecinski J, Doris M, McElhinney P, Cadet S, Adamson PD, Moss AJ, Alam S, Hunter A, Shah ASV, Mills NL, Pawade T, Wang C, Weir-McCall JR,Roditi G, van Beek EJR, Shaw LJ, Nicol ED, Berman D, Slomka PJ, Newby DE, Dweck MR, Dey D, Williams MC. Eur Heart J Cardiovasc Imaging. 2021 Sep 16
  15. Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study. Williams MC, Moss AJ, Dweck M, Adamson PD, Alam S, Hunter A, Shah ASV, Pawade T, Weir-McCall JR, Roditi G, van Beek EJR, Newby DE, Nicol ED. J Am Coll Cardiol. 2019 Jan 29;73(3):291-301
  16. Quantitative assessment of atherosclerotic plaque, recent progress and current limitations. Williams MC, Earls JP, Hecht H. J Cardiovasc Comput Tomogr. 2022 Mar-Apr;16(2):124-137
  17. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–1662.
  18. Ferencik M, Mayrhofer T, Bittner DO, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the promise randomized clinical trial. JAMA Cardiol. 2018;3:144–152.
  19. Henzel J, Kepka C, Kruk M, et al. High-risk coronary plaque regression after intensive lifestyle intervention in nonobstructive coronary disease: a randomized study. JACC Cardiovasc Imaging. 2020;14(6):1192–1202.
  20. Lee S-E, Sung JM, Andreini D, et al. Differential association between the progression of coronary artery calcium score and coronary plaque volume progression according to statins: the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography Imaging (PARADIGM) study. Eur Heart J – Cardiovasc Imag. 2019;20:1307–1314.
  21. Won KB, Lee BK, Park HB, et al. Quantitative assessment of coronary plaque volume change related to triglyceride glucose index: the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography IMaging (PARADIGM) registry. Cardiovasc Diabetol. 2020;19:113.
  22. Yang S, Koo B-K, Hoshino M, et al. CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning. JACC Cardiovasc Imaging 2021;14:629–41
  23. Williams MC, Newby DE. Prognostic value of fractional flow reserve from computed tomography. Heart. 2022 Feb;108(3):160-161.
  24. Nørgaard BL, Gaur S, Fairbairn TA, et al. Prognostic value of coronary computed tomography angiographic derived fractional flow reserve: a systematic review and meta-analysis. Heart 2022;108:194–202
  25. Driessen RS, Stuijfzand WJ, Raijmakers PG, et al. Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Coll Cardiol 2018;71:499–509
  26. Curzen N, Nicholas Z, Stuart B, et al. Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial. Eur Heart J 2021;42:3844–52.
  27. Taylor CA , Fonte TA , Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 2013;61:2233–2241.
  28. Kueh SH , Mooney J , Ohana M , Kim U , Blanke P , Grover R , Sellers S , Ellis J , Murphy D , Hague C , Bax JJ , Norgaard BL , Rabbat M , Leipsic JA. Fractional flow reserve derived from coronary computed tomography angiography reclassification rate using value distal to lesion compared to lowest value. J Cardiovasc Comput Tomogr 2017;11:462–467
  29. Nørgaard BL , Leipsic J , Gaur S , Seneviratne S , Ko BS , Ito H , Jensen JM , Mauri L , De Bruyne B , Bezerra H , Osawa K , Marwan M , Naber C , Erglis A , Park SJ , Christiansen EH , Kaltoft A , Lassen JF , Bøtker HE , Achenbach S ; NXT Trial Study Group. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 2014;63:1145–1155.
  30. Driessen RS , Danad I , Stuijfzand WJ , Raijmakers PG , Schumacher SP , van Diemen PA , Leipsic JA , Knuuti J , Underwood SR , van de Ven PM , van Rossum AC , Taylor CA , Knaapen P. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J Am Coll Cardiol 2019;73:161–173.
  31. Abadia AF, Aquino GJ, Schoepf UJ, Wels M, Schmidt B, Sahbaee P, Dargis DM, Burt JR, Varga-Szemes A, Emrich T. Automated Dual-energy Computed Tomography-based Extracellular Volume Estimation for Myocardial Characterization in Patients With Ischemic and Nonischemic Cardiomyopathy. J Thorac Imaging. 2022 Apr 28.
  32. Shao J, Jiang JS, Wang XY, Wu SM, Xiao J, Zheng KL, Qi RX. Measurement of myocardial extracellular volume using cardiac dual-energy computed tomography in patients with ischaemic cardiomyopathy: a comparison of different methods. Int J Cardiovasc Imaging. 2022 Feb 24.
  33. Measurement of myocardial extracellular volume fraction in patients with heart failure with preserved ejection fraction using dual-energy computed tomography.
    Qi RX, Jiang JS, Shao J, Zhang Q, Zheng KL, Xiao J, Huang S, Gong SC. Eur Radiol. 2022 Jun;32(6):4253-4263.”
  34. Extracellular Volume Quantification With Cardiac Late Enhancement Scanning Using Dual-Source Photon-Counting Detector CT. Mergen V, Sartoretti T, Klotz E, Schmidt B, Jungblut L, Higashigaito K, Manka R, Euler A, Kasel M, Eberhard M, Alkadhi H. Invest Radiol. 2022 Jun 1;57(6):406-411.
  35. Maffei E, Messalli G, Martini C, Nieman K, Catalano O, Rossi A, et al. Left and right ventricle assessment with cardiac CT: validation study vs. cardiac Mr. Eur Radiol 2012; 22: 1041–9.
  36. Hell MM, Steinmann B, Scherkamp T, Arnold MB, Achenbach S, Marwan M. Analysis of left ventricular function, left ventricular outflow tract and aortic valve area using computed tomography: Influence of reconstruction parameters on measurement accuracy. Br J Radiol. 2021 Aug 1;94(1124):20201306.
  37. R.C. Cury, K. Nieman, M.D. Shapiro, J. Butler, C.H. Nomura, M. Ferencik, et al., Comprehensive assessment of myocardial perfusion defects, regional wall motion,
    and left ventricular function by using 64-section multidetector CT, Radiology. 248 (2008) 466–475.
  38. J. Greupner, E. Zimmermann, A. Grohmann, H.P. Dübel, T.F. Althoff, A.C. Borges, et al., Head-to-head comparison of left ventricular function assessment with 64-
    row computed tomography, biplane left cineventriculography, and both 2- and 3- dimensional transthoracic echocardiography: comparison with magnetic resonance
    imaging as the reference standard, J. Am. Coll. Cardiol. 59 (21) (2012) 1897–1907.
  39. R. Nakazato, B.K. Tamarappoo, T.W. Smith, V.Y. Cheng, D. Dey, H. Shmilovich, et al., Assessment of left ventricular regional wall motion and ejection fraction with low-radiation dose helical dual-source CT: comparison to two-dimensional echocardiography, J. Cardiovasc. Comput. Tomogr. 5 (3) (2011) 149–157.
  40. J.W. Lee, K.J. Nam, J.Y. Kim, Y.J. Jeong, G. Lee, S.M. Park, et al., Simultaneous assessment of left ventricular function and coronary artery anatomy by third-
    generation dual-source computed tomography using a low radiation dose, J. Cardiovasc. Imaging. 28 (1) (2020) 21–32.
  41. Hyun Woo Goo. Radiation dose, contrast enhancement, image noise and heart rate variability of ECG-gated CT volumetry using 3D hreshold-based segmentation: Comparison between conventional single scan and dual focused scan methods. Eur J Radiol . 2021 Apr;137:109606
  42. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of ardiovascular Imaging Endorsed by the Saudi Heart Association. Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D’Andrea A, Bruder O, Cosyns B, Davin L, Donal E, Freitas A, Habib G, Kitsiou A, Petersen SE, Schroeder S, Lancellotti P, Camici P, Dulgheru R, Hagendorff A, Lombardi M, Muraru D, Sicari R.
    Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):280
  43. White RD, Patel MR, Abbara S, Bluemke DA, Herfkens RJ, Picard M, Shaw LJ, Silver M, Stillman AE, Udelson J. 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: an executive summary: a joint report of the ACR Aropriateness Criteria ® Committee and the ACCF Appropriate Use Criteria Task Force. American College of Radiology; American College of Cardiology Foundation. J Am Coll Radiol. 2013 Jul;10(7)
  44. Gati S, Rajani R, Carr-White GS, Chambers JB (2014) Adult left ventricular noncompaction: reappraisal of current diagnostic imaging modalities. JACC Cardiovasc Imaging 7(12):1266–1275
  45. Gregor Z, Kiss AK, Szabó LE, Tóth A, Grebur K, Horváth M, Dohy Z, Merkely B, Vágó H, Szűcs A. Sex- and age- specific normal values of left ventricular functional and myocardial mass parameters using threshold-based trabeculae quantification. PLoS One. 2021 Oct 12;16(10):e0258362.
  46. Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, et al. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2012; 5(3):357–66
  47. Francone M, Budde RPJ, Bremerich J, Dacher JN, Loewe C, Wolf F, Natale L, Pontone G, Redheuil A, Vliegenthart R, Nikolaou K, Gutberlet M, Salgado R. CT and MR imaging prior to transcatheter aortic valve implantation: standardisation of scanning protocols, measurements and reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur Radiol. 2020 May;30(5):2627-2650
  48. Haensig M, Rastan AJ (2012) Aortic valve calcium load before TAVI: is it important? Ann Cardiothorac Surg 1:160–164
  49. Ko E, Kang DY, Ahn JM, Kim TO, Kim JH, Lee J, Lee SA, Kim DH, Kim HJ, Kim JB, Choo SJ, Park SJ, Park DW. Association of aortic valvular complex calcification burden with procedural and long-term clinical outcomes after transcatheter aortic valve replacement. Eur Heart J Cardiovasc Imaging. 2021 Sep 7:
  50. Khurrami L, Møller JE, Lindholt JS, Dahl JS, Fredgart MH, Obel LM, Steffensen FH, Urbonaviciene G, Lambrechtsen J, Diederichsen ACP. Aortic valve calcification among elderly males from the general population, associated echocardiographic findings, and clinical implications. Eur Heart J Cardiovasc Imaging. 2022 Jan 24;23(2):177-184.
  51. Veulemans V, Piayda K, Maier O, Bosbach G, Polzin A, Hellhammer K, Afzal S, Klein K, Dannenberg L, Zako S, Jung C, Westenfeld R, Kelm M, Zeus T. Aortic valve calcification is subject to aortic stenosis severity and the underlying flow pattern. Heart Vessels. 2021. Feb;36(2):242-251
  52. Ludwig S, Goßling A, Waldschmidt L, Linder M, Bhadra OD, Voigtländer L, Schäfer A, Deuschl F, Schirmer J, Reichenspurner H, Blankenberg S, Schäfer U, Westermann D, Seiffert M, Conradi L, Schofer N. TAVR for low-flow, low-gradient aortic stenosis: Prognostic impact of aortic valve calcification.
    Am Heart J. 2020 Jul;225:138-148
  53. Fischer-Rasokat U, Renker M, Liebetrau C, Weferling M, Rolf A, Doss M, Möllmann H, Walther T, Hamm CW, Kim WK. Does the severity of low-gradient aortic stenosis classified by computed tomography-derived aortic valve calcification determine the outcome of patients after transcatheter aortic valve implantation (TAVI)? Eur Radiol. 2021 Jan;31(1):549-558
  54. Aortic valve calcification as quantified with multislice computed tomography predicts short-term clinical outcome in patients with asymptomatic aortic stenosis.
    Feuchtner GM, Müller S, Grander W, Alber HF, Bartel T, Friedrich GJ, Reinthaler M, Pachinger O, zur Nedden D, Dichtl W.
    J Heart Valve Dis. 2006 Jul;15(4):494-8
  55. Alkadhi H, Wildermuth S, Plass A, Bettex D, Baumert B, Leschka S, Desbiolles LM, Marincek B, Boehm T. Aortic stenosis: comparative evaluation of 16-detector row CT and echocardiography. Radiology. 2006 Jul;240(1):47-55
  56. Feuchtner GM, Müller S, Bonatti J, Schachner T, Velik-Salchner C, Pachinger O, Dichtl W. Sixty-four slice CT evaluation of aortic stenosis using planimetry of the aortic valve area. AJR Am J Roentgenol. 2007 Jul;189(1):197-203
  57. Ropers D, Ropers U, Marwan M, Schepis T, Pflederer T, Wechsel M, Klinghammer L, Flachskampf FA, Daniel WG, Achenbach S. Comparison of dual-source computed tomography for the quantification of the aortic valve area in patients with aortic stenosis versus transthoracic echocardiography and invasive hemodynamic assessment. Am J Cardiol . 2009 Dec 1;104(11):1561-7.
  58. Blanke P, Weir-McCall JR, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H, Marwan M, Nørgaard BL, Piazza N, Schoenhagen P, Leipsic JA. Computed Tomography Imaging in the Context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR): An Expert Consensus Document of the Society of Cardiovascular Computed Tomography. JACC Cardiovasc Imaging. 2019 Jan;12(1):1-24
  59. Sieren MM, Widmann C, Weiss N, Moltz JH, Link F, Wegner F, Stahlberg E, Horn M, Oecherting TH, Goltz JP, Barkhausen J, Frydrychowicz A. Automated segmentation and quantification of the healthy and diseased aorta in CT angiographies using a dedicated deep learning approach. Eur Radiol. 2022 Jan;32(1):690-701. doi: 10.1007/s00330-021-08130-2. Epub 2021 Jun 25. PMID: 34170365.
  60. Rueda-Ochoa OL, Bons LR, Zhu F, Rohde S, El Ghoul K, Budde RPJ, Ikram MK, Deckers JW, Vernooij MW, Franco OH, van der Lugt A, Bos D, Roos-Hesselink JW, Kavousi M. Thoracic Aortic Diameter and Cardiovascular Events and Mortality among Women and Men. Radiology. 2022 Jul;304(1):208-215. doi: 10.1148/radiol.210861. Epub 2022 Apr 12. PMID: 35412363.
  61. Heuts S, Adriaans BP, Rylski B, Mihl C, Bekkers SCAM, Olsthoorn JR, Natour E, Bouman H, Berezowski M, Kosiorowska K, Crijns HJGM, Maessen JG, Wildberger J, Schalla S, Sardari Nia P. Evaluating the diagnostic accuracy of maximal aortic diameter, length and volume for prediction of aortic dissection. Heart. 2020 Jun;106(12):892-897. doi: 10.1136/heartjnl-2019-316251. Epub 2020 Mar 8. PMID: 32152004.
  62. Pradella M, Weikert T, Sperl JI, Kärgel R, Cyriac J, Achermann R, Sauter AW, Bremerich J, Stieltjes B, Brantner P, Sommer G. Fully automated guideline-compliant diameter measurements of the thoracic aorta on ECG-gated CT angiography using deep learning. Quant Imaging Med Surg. 2021 Oct;11(10):4245-4257. doi: 10.21037/qims-21-142. PMID: 34603980; PMCID: PMC8408788.
  63. Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Hetts SW, Higgins CB. CT and MR imaging of pericardial disease. Radiographics. 2003 Oct;23 Spec No:S167-80. doi: 10.1148/rg.23si035504. PMID: 14557510.
  64. Zhou J, Chen Y, Zhang Y, Wang H, Tan Y, Liu Y, Huang L, Zhang H, Ma Y, Cong H. Epicardial Fat Volume Improves the Prediction of Obstructive Coronary Artery Disease Above Traditional Risk Factors and Coronary Calcium Score. Circ Cardiovasc Imaging. 2019 Jan;12(1):e008002. doi: 10.1161/CIRCIMAGING.118.008002. PMID: 30642215.
  65. Spearman JV, Renker M, Schoepf UJ, Krazinski AW, Herbert TL, De Cecco CN, Nietert PJ, Meinel FG. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. Eur Radiol. 2015 Nov;25(11):3372-81. doi: 10.1007/s00330-015-3765-5. Epub 2015 Apr 30. PMID: 25925354; PMCID: PMC4596752.
  66. Balcer B, Dykun I, Schlosser T, Forsting M, Rassaf T, Mahabadi AA. Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis. 2018 Sep;276:182-188. doi: 10.1016/j.atherosclerosis.2018.05.035. Epub 2018 May 25. PMID: 29866393.
  67. Mancio J, Azevedo D, Fragao-Marques M, Falcao-Pires I, Leite-Moreira A, Lunet N, Fontes-Carvalho R, Bettencourt N. Am J Cardiol. 2019 Feb 1;123(3):523-531. Meta-Analysis of Relation of Epicardial Adipose Tissue Volume to Left Atrial Dilation and to Left Ventricular Hypertrophy and Functions
  68. Franssens BT, , Nathoe HM, , Visseren FLJ, , van der Graaf Y, , Leiner T, , Algra A, , Group SS, , et al.. Relation of epicardial adipose tissue Radiodensity to coronary artery calcium on cardiac computed tomography in patients at high risk for cardiovascular disease. Am J Cardiol 2017; 119: 1359–65. doi: https://doi.org/10.1016/j.amjcard.2017.01.031
  69. Marwan M, , Hell M, , Schuhbäck A, , Gauss S, , Bittner D, , Pflederer T, , et al.. Ct attenuation of Pericoronary adipose tissue in normal versus atherosclerotic coronary segments as defined by intravascular ultrasound. J Comput Assist Tomogr 2017; 41: 762–7. doi: https://doi.org/10.1097/RCT.0000000000000589
  70. Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, et al.. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med 2017; 9: eaal2658. doi: https://doi.org/10.1126/scitranslmed.aal2658
  71. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham heart study. Eur Heart J 2009; 30: 850–6. doi: https://doi.org/10.1093/eurheartj/ehn573
  72. Kitagawa, K, Nakamura, S, Ota H, et al. Diagnostic Performance of Dynamic CT Perfusion Imaging in a Prospective Multicenter Study.J Am Coll Cardiol 2021;78:1937–1949
  73. Pontone G, Baggiano A, Andreini D, et al. Dynamic stress computed tomography perfusion with a whole-heart coverage scanner in addition to coronary computed tomography angiography and fractional flow reserve computed tomography derived. J Am Coll Cardiol Img. 2019;12:2460-2471.
  74. Andreini D, Mushtaq S, Pontone G, et al. CTperfusion versus coronary CT angiography in patients with suspected in-stent restenosis or CADprogression. J Am Coll Cardiol Img. 2020;13:732–742
  75. Ho KT, Chua KC, Klotz E, et al. Stress and rest dynamic myocardial perfusion imaging by evaluation of complete time-attenuation curves with dual-source CT. J Am Coll Cardiol Img. 2010;3:811–820.

CARDIOVASCULAR MR

Biomarker Acquisition Modality Acquisition requirements Extracting biomarker (Reading/Algorithm) Target Level of evidence references Evidence Issues
T1 mapping (T1 native, post contrast, ECV) MRI hematocrit level (ECV) and T1-mapping prior and after contrast administration quantitative quantification of diffuse myocardial fibrosis; early detection of myocardial disorders 1 [1-3!] substantial ariability among different scanner type and models (poor inter-center reproducibility); standardization for each scanner required
need of dedicated software analysis, motion correction and co-registration algorithms, not feasible in device wearers
Variable inter-observer/software reproducibility 
T2 mapping MRI T2 mapping quantitative quantification of myocardial edema 2 [1!, 4-7!] Moderate
T2* mapping MRI ECG-gated GRE T2* sequence  quantitative quantification of myocardial iron overload  [1!, 8-9! Substantial variability among different scanner type and models; standardization for each scanner required (possibly using phantom), need of dedicated software analysis,motion correction and co-registration algorithms, not feasible in device wearers, Variable inter-observer/software reproducibility
Late enhancement (LE) (transmurality, voljume, localization, configuration, MVO, haemorrhage) MRI late phase acquisition 10 - 20' after contrast injection semi-quantitative diagnosis and quantification of myocardial necrosis; outcome prediction after myocardial infarction 1 [10-12!] Substantial optimal "nulling" of the myocardium required
LV/RV function (EF, ESV, EDV, co) MRI CINE-sequences obtained in short axis orientatation quantitative fundamental information about ventricular function and disease severity in all cardiac disorders 1 [13-17! Substantial manual interaction required for anaysis
LV/RV wall motion (wall motion score index, wall fractional shortening, wall displacement, intra- or interventricular dyssynchrony) MRI CINE-sequences obtained in short axis orientatation quantitative  identification of asymptomatic patients with subclinical LV dysfunction  2-3 [18!] limited dedicated software required
LV/RV myocardial deformation (systolic and diastolic circumferential and longitudinal strain) MRI CINE-sequences obtained in short axis orientatation quantitative  identification of asymptomatic patients with subclinical LV dysfunction  2-3 [19!] limited dedicated software required
Flow quantification (peak and mean velocity, flow, forward or backward volume, maximum pressure gradient) MRI CINE imaging and phase-contrast angiography quantitative  quantification of flow among cardiac valves as well as within the aorta 2-3 [20-21!] moderate difficult after valvular repair with metallic implants
4D flow MRI spoiled gradient echo sequences with short TR  quantitative detailed assessment of fow characteristics in all chambers and great vessels 2-3 [22-23! moderate dedicated software for analysis required
MR angiography MRI contrast-enhanced strongly T1-weighted arterial phase sequences semi-quantitative diagnosis and quantification of all kinds of vascular diseases of the large vessles 1 [24-25! Substantial calcifications are not visulaized; stent-lumen can not be assessed
Aortic diameter MRI visulaization of aortic lumen and wall; many sequences available (black blood, bright blood) quantitative diagnosis and quantification of aortic dilatation / aneurysm 1 [26-27!] Substantial accurate measurements required plane perpendicular to the vessel axis
 LV wall thickness,  MRI ECG gated MR scan of the entire cardiac cycle in short axis orientation quantitive diagnosis of ventricular hypertrophy 1 [28-30!] substantial measurement of thickness has to be obtained from real end- diastole;
myocardial mass, MRI ECG gated MR scan of the entire cardiac cycle in short axis orientation quantitive diagnosis of ventricular hypertrophy 1 [28-30!] substantial no final consensus if papillary muscles should be included in myocardial mass assessment
 LV trabeculation (trabeculation thickness, ratio of thickness and volume of compacted/ MRI short axis stack cine bSSFP quantitative quantification of trabeculated LV-myocardium, diagnosis of LVNC (left-ventricular non-compaction cardiomyopathy) 2-3 [31-38!] limited no uniform recommendation for measurements (manual versus semiautomatic, trabeculation thickness versus volume versus mass or ratio, blood pool between trabeculae included in or excluded from trabeculation mass or volume)
trabeculation thickness MRI short axis stack cine bSSFP quantitative thickness of trabeculated 3 [31-38!]
NC/C thickness ratio MRI short and long axis cine bSSFP quantitative thickness of trabeculated/compact LV myocardium 3 [31-38!]
Trabeculation mass MRI short axis stack cine bSSFP quantitative mass of trabeculated LV myocardium 3 [31-38!]
Trabeculation volume MRI short axis stack cine bSSFP quantitative Volume of trabeculated LV myocardium 3 [31-38!]
NC/C mass ratio MRI short axis stack cine bSSFP quantitative mass of trabeculated/compacted LV myocardium 3 [31-38!]
NC/TM mass ratio MRI short axis stack cine bSSFP quantitative ratio of trabeculated/total LV myocardial mass 3 [31-38!]
Fractal dimension MRI short axis stack cine bSSFP quantitative fractal complexity of LV trabeculation 3 [31-38!]
Myocardial perfusion (myocardial blood flow, perfusion reserve) MRI T1-w first pass perfusion GRE at rest and during vasodilator stress quantitative absolute quantification of myocardial blood flow (MBF) in ml/min/g and calculation of myocardial perfusion reserve (MBF during stress/MBF at rest); assessment of coronary artery disease 1-2 [39-41!] substantial dedicated software required, accurate measurements required, low-dose bolus injection required
Pulmonary artery (diameter) MRI cross sectional 2D or 3D bSSFP quantitative diameter of pulmonary artery; pulmonary hypertension, congenital heart disease 2 [42!] Moderate measurements obtained perpendicular to vessel 
  1. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017 Oct 9;19(1):75. doi: 10.1186/s12968-017-0389-8.
  2. Seiko Ide, Eugenie Riesenkampff, David A Chiasson, Anne I Dipchand, Paul F Kantor, Rajiv R Chaturvedi, Shi-Joon Yoo, Lars Grosse-Wortmann. Histological validation of cardiovascular magnetic resonance T1 mapping markers of myocardial fibrosis in paediatric heart transplant recipients. J Cardiovasc Magn Reson. 2017 Feb 1;19(1):10. doi: 10.1186/s12968-017-0326-x.
  3. Martin Ugander, Abiola J Oki, Li-Yueh Hsu, Peter Kellman, Andreas Greiser, Anthony H Aletras, Christopher T Sibley, Marcus Y Chen, W Patricia Bandettini, Andrew E Arai. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012 May;33(10):1268-78. doi: 10.1093/eurheartj/ehr481. Epub 2012 Jan 24
  4. Fernández-Jiménez, R., Sánchez-González, J., Aguero, J. et al. Fast T2 gradient-spin-echo (T2-GraSE) mapping for myocardial edema quantification: first in vivo validation in a porcine model of ischemia/reperfusion. J Cardiovasc Magn Reson 17, 92 (2015). doi: 10.1186/s12968-015-0199-9
  5. Thavendiranathan P, Walls M, Giri S, et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging. 2012 Jan;5(1):102-10. doi: 10.1161/CIRCIMAGING.111.967836. Epub 2011 Oct 28.
  6. Verhaert D, Thavendiranathan P, Giri S, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging. 2011 Mar;4(3):269-78. doi: 10.1016/j.jcmg.2010.09.023.
  7. Gannon MP, Schaub E, Grines CL, Saba SG. State of the art: Evaluation and prognostication of myocarditis using cardiac MRI. J Magn Reson Imaging. 2019 Jun;49(7):e122-e131. doi: 10.1002/jmri.26611. Epub 2019 Jan 13. PMID: 30637834.
  8. Lima da Cruz GJ, Velasco C, Lavin B, Jaubert O, Botnar RM, Prieto C. Myocardial T1, T2, T2*, and fat fraction quantification via low-rank motion-corrected cardiac MR fingerprinting. Magn Reson Med. 2022 Jun;87(6):2757-2774. doi: 10.1002/mrm.29171. Epub 2022 Jan 26. PMID: 35081260.
  9. Triadyaksa P, Oudkerk M, Sijens PE. Cardiac T2 * mapping: Techniques and clinical applications. J Magn Reson Imaging. 2020 Nov;52(5):1340-1351. doi: 10.1002/jmri.27023. Epub 2019 Dec 14. PMID: 31837078; PMCID: PMC7687175.
  10. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999 Nov 9;100(19):1992-2002. doi: 10.1161/01.cir.100.19.1992. PMID: 10556226.
  11. Scott PA, Rosengarten JA, Curzen NP, Morgan JM. Late gadolinium enhancement cardiac magnetic resonance imaging for the prediction of ventricular tachyarrhythmic events: a meta-analysis. Eur J Heart Fail. 2013 Sep;15(9):1019-27. doi: 10.1093/eurjhf/hft053. Epub 2013 Apr 4. PMID: 23558217.
  12. Georgiopoulos G, Figliozzi S, Sanguineti F, Aquaro GD, di Bella G, Stamatelopoulos K, Chiribiri A, Garot J, Masci PG, Ismail TF. Prognostic Impact of Late Gadolinium Enhancement by Cardiovascular Magnetic Resonance in Myocarditis: A Systematic Review and Meta-Analysis. Circ Cardiovasc Imaging. 2021 Jan;14(1):e011492. doi: 10.1161/CIRCIMAGING.120.011492. Epub 2021 Jan 14. PMID: 33441003.
  13. Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, et al. Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson. 2020 Dec 14;22(1):87
  14. Tao Q, Yan W, Wang Y, et al. Deep Learning-based Method for Fully Auto‑ matic Quantifcation of Left Ventricle Function from Cine MR Images: A Multivendor Multicenter Study. Radiology. 2019;290:81–8
  15. Schulz-Menger J, Bluemke DA, Bremerich J,, et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance–2020 update: Society for Cardio‑ vascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson. 2020;22:19
  16. Leiner, T., Bogaert, J., Friedrich, M.G. et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 22, 76 (2020.
  17. Steen H, Giusca S, Montenbruck M, et al. Left and right ventricular strain using fast strain-encoded cardiovascular magnetic resonance for the diagnostic classification of patients with chronic non-ischemic heart failure due to dilated, hypertrophic cardiomyopathy or cardiac amyloidosis. J Cardiovasc Magn Reson. 2021 Apr 5;23(1):4
  18. Steen H, Giusca S, Montenbruck M, et al. Left and right ventricular strain using fast strain-encoded cardiovascular magnetic resonance for the diagnostic classification of patients with chronic non-ischemic heart failure due to dilated, hypertrophic cardiomyopathy or cardiac amyloidosis. J Cardiovasc Magn Reson. 2021 Apr 5;23(1):4
  19. Korosoglou G, Giusca S, Montenbruck M, et al. Fast Strain-Encoded Cardiac Magnetic Resonance for Diagnostic Classification and Risk Stratification of Heart Failure Patients. JACC Cardiovasc Imaging. 2021 Jun;14(6):1177-1188
  20. Fukui M, Bing R, Dweck M, Cavalcante JL. Assessment of Aortic Stenosis by Cardiac Magnetic Resonance Imaging: Quantification of Flow, Characterization of Myocardial Injury, Transcatheter Aortic Valve Replacement Planning, and More. Magn Reson Imaging Clin N Am. 2019 Aug;27(3):427-437
  21. Rajiah P, Bolen MA. Cardiovascular MR imaging at 3 T: opportunities, challenges, and solutions. Radiographics. 2014 Oct;34(6):1612-35
  22. Elsayed A, Gilbert K, Scadeng M, et al. Four-dimensional flow cardiovascular magnetic resonance in tetralogy of Fallot: a systematic review. J Cardiovasc Magn Reson. 2021 May 20;23(1):59.
  23. Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015 Aug 10;17(1):72
  24. Lambert MA, Weir-McCall JR, Salsano M, Gandy SJ, Levin D, Cavin I, Littleford R, MacFarlane JA, Matthew SZ, Nicholas RS, Struthers AD, Sullivan F, Henderson SA, White RD, Belch JJF, Houston JG. Prevalence and Distribution of Atherosclerosis in a Low- to Intermediate-Risk Population: Assessment with Whole-Body MR Angiography. Radiology. 2018 Jun;287(3):795-804. doi: 10.1148/radiol.2018171609. Epub 2018 May 1. PMID: 29714681; PMCID: PMC5979784.
  25. Anzidei M, Napoli A, Zaccagna F, Di Paolo P, Saba L, Cavallo Marincola B, Zini C, Cartocci G, Di Mare L, Catalano C, Passariello R. Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients. Radiol Med. 2012 Feb;117(1):54-71. English, Italian. doi: 10.1007/s11547-011-0651-3. Epub 2011 Mar 7. PMID: 21424318.
  26. Smith LR, Darty SN, Jenista ER, Gamoneda GL, Wendell DC, Azevedo CF, Parker MA, Kim RJ, Kim HW. ECG-gated MR angiography provides better reproducibility for standard aortic measurements. Eur Radiol. 2021 Jul;31(7):5087-5095. doi: 10.1007/s00330-020-07408-1. Epub 2021 Jan 6. PMID: 33409772.
  27. Smith LR, Darty SN, Jenista ER, Gamoneda GL, Wendell DC, Azevedo CF, Parker MA, Kim RJ, Kim HW. ECG-gated MR angiography provides better reproducibility for standard aortic measurements. Eur Radiol. 2021 Jul;31(7):5087-5095. doi: 10.1007/s00330-020-07408-1. Epub 2021 Jan 6. PMID: 33409772.
  28. Kawel N, Turkbey EB, Carr JJ, Eng J, Gomes AS, Hundley WG, Johnson C, Masri SC, Prince MR, van der Geest RJ, et al. Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of  atherosclerosis. Circ Cardiovasc Imaging. 2012;5:500–8
  29. Le Ven F, Bibeau K, De Larochelliere E, Tizon-Marcos H, Deneault-Bissonnette S, Pibarot P, Deschepper CF, Larose E. Cardiac morphology and function reference values derived from a large subset of healthy young Caucasian adults by magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2016;17:981–90
  30. Yeon SB, Salton CJ, Gona P, Chuang ML, Blease SJ, Han Y, Tsao CW, Danias PG, Levy D, O’Donnell CJ, Manning WJ. Impact of age, sex, and indexation method on MR left ventricular reference values in the Framingham Heart Study offspring cohort. J Magn Reson Imaging. 2015;41:1038–45
  31. Dawson DK, Maceira AM, Raj VJ, Graham C, Pennell DJ, Kilner PJ. Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2011;4:139–46.
  32. Kawel N, Nacif M, Arai AE, Gomes AS, Hundley WG, Johnson WC, Prince, MR, Stacey RB, Lima JA, Bluemke DA. Trabeculated (noncompacted) and compact myocardium in adults: the multi-ethnic study of atherosclerosis. Circ Cardiovasc Imaging. 2012;5:357–66.
  33. Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, Sado, DM, Anderson S, McKenna WJ, Mohun TJ, et al. Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson. 2013;15:36.
  34. Bentatou Z, Finas M, Habert P, Kober F, Guye M, Bricq S, Lalande A, Frandon J, Dacher JN, Dubourg B, et al. Distribution of left ventricular trabeculation across age and gender in 140 healthy Caucasian subjects on MR imaging. Diagn Interv Imaging. 2018;99:689–98.
  35. Andre F, Burger A, Lossnitzer D, Buss SJ, Abdel-Aty H, Gianntisis E, Steen, H, Katus HA. Reference values for left and right ventricular trabeculation and non-compacted myocardium. Int J Cardiol. 2015;185:240–7
  36. Amzulescu MS, Rousseau MF, Ahn SA, Boileau L. Prognostic impact of hypertrabeculation and noncompaction phenotype in dilated cardiomyopathy: a CMR study. JACC Cardiovasc Imaging. 2015;8:934–46.
  37. Captur G, Zemrak F, Muthurangu V, Petersen SE, Li C, Bassett P, Kawel-Boehm N, McKenna WJ, Elliott PM, Lima JA, et al. Fractal analysis of myocardial trabeculations in 2547 study participants: multi-ethnic study of atherosclerosis. Radiology. 2015;277:707–15
  38. Cai J, Bryant JA, Le TT, Su B, de Marvao A, O’Regan DP, Cook SA, Chin CW. Fractal analysis of left ventricular trabeculations is associated with impaired myocardial deformation in healthy Chinese. J Cardiovasc Magn Reson. 2017;19:102.
  39. Wang L, Jerosch-Herold M, Jacobs DR Jr, Shahar E, Folsom AR. Coronary risk factors and myocardial perfusion in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2006;47:565–72.
  40. Brown LAE, Onciul SC, Broadbent DA, Johnson K, Fent GJ, Foley JRJ, Garg P, Chew PG, Knott K, Dall’Armellina E, et al. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. J Cardiovasc Magn Reson. 2018;20:48.
  41. Madriago E, Wells R, Sahn DJ, Diggs BS, Langley SM, Woodward DJ, Jerosch-Herold M, Silberbach M. Abnormal myocardial blood flow in children with mild/moderate aortic stenosis. Cardiol Young. 2015;25:1358–66
  42. Burman ED, Keegan J, Kilner PJ. Pulmonary artery diameters, cross sectional areas and area changes measured by cine cardiovascular magnetic resonance in healthy volunteers. J Cardiovasc Magn Reson. 2016;18:12

Become A Member Today!

You will have access to a wide range of benefits that can help you advance your career and stay up-to-date with the latest developments in the field of radiology. These benefits include access to educational resources, networking opportunities with other professionals in the field, opportunities to participate in research projects and clinical trials, and access to the latest technologies and techniques. 

Check out our different membership options.

If you don’t find a fitting membership send us an email here.

Membership

for radiologists, radiology residents, professionals of allied sciences (including radiographers/radiological technologists, nuclear medicine physicians, medical physicists, and data scientists) & professionals of allied sciences in training residing within the boundaries of Europe

  • Reduced registration fees for ECR 1
  • Reduced fees for the European School of Radiology (ESOR) 2
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology 
  • Content e-mails for all ESR journals4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 11 /year

Yes! That is less than €1 per month.

Free membership

for radiologists, radiology residents or professionals of allied sciences engaged in practice, teaching or research residing outside Europe as well as individual qualified professionals with an interest in radiology and medical imaging who do not fulfil individual or all requirements for any other ESR membership category & former full members who have retired from all clinical practice
  • Reduced registration fees for ECR 1
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology
  • Content e-mails for all ESR journals 4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 0

The best things in life are free.

ESR Friends

For students, company representatives or hospital managers etc.

  • Content e-mails for all 3 ESR journals 4
  • Updates on offers & events through our newsletters

€ 0

Friendship doesn’t cost a thing.

The membership type best fitting for you will be selected automatically during the application process.

Footnotes:

01

Reduced registration fees for ECR 2025:
Provided that ESR 2024 membership is activated and approved by August 31, 2024.

02
Not all activities included
03
Examination based on the ESR European Training Curriculum (radiologists or radiology residents).
04
European Radiology, Insights into Imaging, European Radiology Experimental.