Biomarkers Neuro-Tumors

The following list has been prepared in collaboration with the EU-COST Action GLiMR2.0 (for further reference please see the main papers of the working group, which can be found here and here).

Biomarker Units of Measurement Acquisition Modality Data Acquisition Requirements Patient Prep Extracting biomarker (Reading/Algorithm) Pathophysiological Process Target:
MONITORING BIOMARKER
Evidence Level (Ref) Evidence (type of studies: single/multi/meta-analysis) Issues/Limitations
DCE (Ktrans) 1-6! min-1 (Ktrans) Ktrans-ratio (normalised to unaffected tissue) MR (T1w DCE) Temporal resolution <10 sec (ideal ≤5 sec) i.v. placement for contrast agent administration Phamarkokinetic analysis (Tofts' modles or Tofts' extended model) Neoangiogenesis Recurrence, evaluation treatment reponse 3a single center, meta-analyses no established criteria of interpretation/cut-offs

DCE (Vp) 4-7!

ml/100 ml (Vp), Vp-ratio (normalised to unaffected tissue)

MR (T1w DCE)

Temporal resolution <10 sec (ideal ≤5 sec)

i.v. placement for contrast agent administration

Phamarkokinetic analysis (Tofts' extended model)

Neoangiogenesis

Recurrence, evaluation treatment reponse

3a

single center, meta-analyses

no established criteria of interpretation/cut-offs

DSC (CBV)

2-3!, 8-9!

standardized units, ml/100g or rCBV-ratio (normalized to unaffected tissue)

MR (GRE-EPI)

Temporal resolution 1-1.5 sec, 120 time points, with 30-50 baseline points collected before contrast bolus passage

i.v. placement for contrast agent administration

Pharmokinetic models that include conversion to ∆R2* and correction for contrast agent extravastion

Neoangiogenesis

Recurrence, evaluation treatment reponse

2a

numerous single center, and several multi-center studies, meta-analyses

Emerging evidence of consistent thresholds, to distinguish glioblastoma tumor from treatment effect, in some single and multi-institutional studies.

ASL (CBF)

10-12!

ml/min/100ml (CBF units), or ratio (normalised to unaffected tissue)

MRI (ASL)

Comparable sequence available from all major vendors (~4 min). Additional calibration scan is required for calibration (<30sec)

n.a.

Quantification equation (based on kinetic model) based on the ASL and calibration data

Neoangiogenesis

Recurrence, evaluation treatment reponse

3a

single center, meta-analyses

no established criteria of interpretation/cut-offs

1H-MRS (tCho/tNAA)

ratio

MRS

expert method, 5-20 min acquisition

n.a.

Spectral fitting

Metabolism

Recurrence, evaluation treatment reponse

3a

single center, few multicenter, meta-analyses

no established criteria of interpretation/cut-offs

DWI (ADC)

13-14!

mm2/s (ADC) or ratio (rADC, normalised to unaffected tissue)

MR (DWI)

Comparable sequence available from all major vendors, rapid acquisition (1 min), 3 diffusion directions, minimum b0 and b1000 mm2/s

n.a.

ROI or VOI

Restriction and environment of water molecules

Recurrence, evaluation treatment reponse

3a

single center, few multicenter, one meta-analysis

no widely established criteria of interpretation/cut-offs

DWI (DTI) 15!

mm2/s (MD), value range 0-1 (FA)

MR (DTI)

Comparable sequence available from all major vendors, 5-15 mins, minimum 6 directions

n.a.

ROI or VOI; can undergo post-processing for tractography

Restriction directionality and environment of water molecules

Recurrence, evaluation treatment response

3b

single center, few multicenter, one meta-analysis

no consensus regarding direction numbers or b-value shells, no established criteria of interpretation/cut-offs

CEST (APT) 16!

% of the water signal

MR (CEST)

Non-standardised across vendors, at 3T preferred pulse‐train method (B1rms = 2 μT, T sat = 2 s)

n.a.

model fitting or MTR analysis in ROI or VOI

levels of mobile proteins and peptides in tissue

Recurrence, evaluation treatment response

3b

single center

difficulty to separate chemical and NOE effects at clinical MRI field strength, no established criteria of interpretation/cut-offs

Amino acid PET (tumour-to-background ratio) 17-24!

a.u.

PET (11C-MET, 18F-FET, 18F-FDOPA)

FET: 20 min static 20 min p.i. MET 20 min static 10 min p.i.,FDOPA 10-20 min static 10-30 min p.i.

i.v. placement for tracer administration & 4 h fasting

ROI and/or VOI-based analysis

Expression of L-type amino acid transporter

Recurrence, evaluation treatment reponse

3a

single center, meta-analyses

availability

FDG PET (tumour-to-background, visual or ratio)

22-24!

a.u.

PET (18F-FDG)

10-20 min static imaging min 45 min p.i.

i.v. placement for tracer administration & 4 h fasting & 30 min rest p.i.

ROI/VOI: Tumor-to-background uptake ratios

Glucose metabolism

Recurrence, evaluation treatment response

3a

single center, meta-analyses

high physiological uptake in brain

  1. van Dijken, B. R. J., van Laar, P. J., Holtman, G. A., & van der Hoorn, A. (2017). Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. European radiology, 27(10), 4129–4144. https://doi.org/10.1007/s00330-017-4789-9
  2. Patel, P., Baradaran, H., Delgado, D., Askin, G., Christos, P., John Tsiouris, A., & Gupta, A. (2017). MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro-oncology, 19(1), 118–127. https://doi.org/10.1093/neuonc/now148
  3. Wang, L., Wei, L., Wang, J., Li, N., Gao, Y., Ma, H., Qu, X., & Zhang, M. (2020). Evaluation of perfusion MRI value for tumor progression assessment after glioma radiotherapy: A systematic review and meta-analysis. Medicine, 99(52), e23766. https://doi.org/10.1097/MD.0000000000023766
  4. Quantitative imaging biomarkers alliance (QIBA). (2020). QIBA Profile 4: DCE-MRI Quantification (DCEMRI-Q). Stage 1: Public Comment. https://qibawiki.rsna.org/images/1/1f/QIBA_DCE-MRI_Profile-Stage_1-Public_Comment.pdf. Accessed: 27.02.2023.
  5. ACR, ASNR, SPR. (Revised 2022; Resolution 24). ACR–ASNR–SPR Practice Parameter For The Performance Of Intracranial Magnetic Resonance Perfusion Imaging. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Perfusion.pdf. Accessed: 27.02.2023.
  6. Okuchi, S., Rojas-Garcia, A., Ulyte, A., Lopez, I., Ušinskienė, J., Lewis, M., Hassanein, S. M., Sanverdi, E., Golay, X., Thust, S., Panovska-Griffiths, J., & Bisdas, S. (2019). Diagnostic accuracy of dynamic contrast-enhanced perfusion MRI in stratifying gliomas: A systematic review and meta-analysis. Cancer medicine, 8(12), 5564–5573. https://doi.org/10.1002/cam4.2369
  7. Hatzoglou, V., Yang, T. J., Omuro, A., Gavrilovic, I., Ulaner, G., Rubel, J., Schneider, T., Woo, K. M., Zhang, Z., Peck, K. K., Beal, K., & Young, R. J. (2016). A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol, 18(6), 873-880. https://doi.org/10.1093/neuonc/nov301
  8. Boxerman, J. L., Quarles, C. C., Hu, L. S., Erickson, B. J., Gerstner, E. R., Smits, M., Kaufmann, T. J., Barboriak, D. P., Huang, R. H., Wick, W., Weller, M., Galanis, E., Kalpathy-Cramer, J., Shankar, L., Jacobs, P., Chung, C., van den Bent, M. J., Chang, S., Al Yung, W. K., Cloughesy, T. F., Wen, P. Y., Gilbert, M. R., Rosen, B. R., Ellingson, B. M., & Schmainda, K. M.; Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering Committee. (2020). Consensus recommendations for a dynamic susceptibility contrast MRI protocol for use in high-grade gliomas. Neuro Oncol, 22(9), 1262-1275. https://doi.org/10.1093/neuonc/noaa141
  9. Hoxworth, J. M., Eschbacher, J. M., Gonzales, A. C., Singleton, K. W., Leon, G. D., Smith, K. A., Stokes, A. M., Zhou, Y., Mazza, G. L., Porter, A. B., Mrugala, M. M., Zimmerman, R. S., Bendok, B. R., Patra, D. P., Krishna, C., Boxerman, J. L., Baxter, L. C., Swanson, K. R., Quarles, C. C., Schmainda, K. M., … Hu, L. S. (2020). Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies. AJNR. American journal of neuroradiology, 41(3), 408–415. https://doi.org/10.3174/ajnr.A6486
  10. Lindner, T., Bolar, D. S., Achten, E., Barkhof, F., Bastos-Leite, A. J., Detre, J. A., Golay, X., Günther, M., Wang, D. J. J., Haller, S., Ingala, S., Jäger, H. R., Jahng, G. H., Juttukonda, M. R., Keil, V. C., Kimura, H., Ho, M. L., Lequin, M., Lou, X., Petr, J., Pinter, N., Pizzini, F. B., Smits, M., Sokolska, M., Zaharchuk, G., & Mutsaerts, H. J. M. M.; on behalf of the ISMRM Perfusion Study Group. (2023). Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med, 89(5), 2024-2047. https://doi.org/10.1002/mrm.29572
  11. Kong, L., Chen, H., Yang, Y., & Chen, L. (2017). A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clinical radiology, 72(3), 255–261. https://doi.org/10.1016/j.crad.2016.10.016
  12. Alsaedi, A., Doniselli, F., Jäger, H. R., Panovska-Griffiths, J., Rojas-Garcia, A., Golay, X., & Bisdas, S. (2019). The value of arterial spin labelling in adults glioma grading: systematic review and meta-analysis. Oncotarget, 10(16), 1589–1601. https://doi.org/10.18632/oncotarget.26674
  13. Yu, Y., Ma, Y., Sun, M., Jiang, W., Yuan, T., & Tong, D. (2020). Meta-analysis of the diagnostic performance of diffusion magnetic resonance imaging with apparent diffusion coefficient measurements for differentiating glioma recurrence from pseudoprogression. Medicine, 99(23), e20270. https://doi.org/10.1097/MD.0000000000020270
  14. Zhang, H., Ma, L., Shu, C., Wang, Y. B., & Dong, L. Q. (2015). Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis. Journal of the neurological sciences, 351(1-2), 65–71. https://doi.org/10.1016/j.jns.2015.02.038
  15. Suh, C. H., Kim, H. S., Jung, S. C., & Kim, S. J. (2018). Diffusion-Weighted Imaging and Diffusion Tensor Imaging for Differentiating High-Grade Glioma from Solitary Brain Metastasis: A Systematic Review and Meta-Analysis. AJNR. American journal of neuroradiology, 39(7), 1208–1214. https://doi.org/10.3174/ajnr.A5650
  16. Zhou, J., Zaiss, M., Knutsson, L., Sun, P. Z., Ahn, S. S., Aime, S., Bachert, P., Blakeley, J. O., Cai, K., Chappell, M. A., Chen, M., Gochberg, D. F., Goerke, S., Heo, H. Y., Jiang, S., Jin, T., Kim, S. G., Laterra, J., Paech, D., Pagel, M. D., … van Zijl, P. C. M. (2022). Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magnetic resonance in medicine, 88(2), 546–574. https://doi.org/10.1002/mrm.29241
  17. Mehrkens, J. H., Pöpperl, G., Rachinger, W., Herms, J., Seelos, K., Tatsch, K., Tonn, J. C., & Kreth, F. W. (2008). The positive predictive value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. Journal of neuro-oncology88(1), 27–35. https://doi.org/10.1007/s11060-008-9526-4
  18. Galldiks, N., Lohmann, P., Albert, N. L., Tonn, J. C., & Langen, K. J. (2019). Current status of PET imaging in neuro-oncology. Neuro-oncology advances, 1(1), vdz010. https://doi.org/10.1093/noajnl/vdz010
  19. Werner, J. M., Lohmann, P., Fink, G. R., Langen, K. J., & Galldiks, N. (2020). Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors. Molecules (Basel, Switzerland), 25(6), 1471. https://doi.org/10.3390/molecules25061471
  20. Jain, S., & Dhingra, V. K. (2023). An overview of radiolabeled amino acid tracers in oncologic imaging. Frontiers in oncology, 13, 983023. https://doi.org/10.3389/fonc.2023.983023
  21. Singnurkar, A., Poon, R., & Detsky, J. (2023). 18F-FET-PET imaging in high-grade gliomas and brain metastases: A systematic review and meta-analysis. Journal of Neurooncology, 161(1), 1-12. https://doi.org/10.1007/s11060-022-04201-6
  22. Cui, M., Zorrilla-Veloz, R. I., Hu, J., Guan, B., & Ma, X. (2021). Diagnostic Accuracy of PET for Differentiating True Glioma Progression From Post Treatment-Related Changes: A Systematic Review and Meta-Analysis. Frontiers in neurology, 12, 671867. https://doi.org/10.3389/fneur.2021.671867
  23. de Zwart, P. L., van Dijken, B. R. J., Holtman, G. A., Stormezand, G. N., Dierckx, R. A. J. O., Jan van Laar, P., & van der Hoorn, A. (2020). Diagnostic Accuracy of PET Tracers for the Differentiation of Tumor Progression from Treatment-Related Changes in High-Grade Glioma: A Systematic Review and Metaanalysis. Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 61(4), 498–504. https://doi.org/10.2967/jnumed.119.233809
  24. Law, I., Albert, N. L., Arbizu, J., Boellaard, R., Drzezga, A., Galldiks, N., la Fougère, C., Langen, K. J., Lopci, E., Lowe, V., McConathy, J., Quick, H. H., Sattler, B., Schuster, D. M., Tonn, J. C., & Weller, M. (2019). Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. European journal of nuclear medicine and molecular imaging, 46(3), 540–557. https://doi.org/10.1007/s00259-018-4207-9

Become A Member Today!

You will have access to a wide range of benefits that can help you advance your career and stay up-to-date with the latest developments in the field of radiology. These benefits include access to educational resources, networking opportunities with other professionals in the field, opportunities to participate in research projects and clinical trials, and access to the latest technologies and techniques. 

Check out our different membership options.

If you don’t find a fitting membership send us an email here.

Membership

for radiologists, radiology residents, professionals of allied sciences (including radiographers/radiological technologists, nuclear medicine physicians, medical physicists, and data scientists) & professionals of allied sciences in training residing within the boundaries of Europe

  • Reduced registration fees for ECR 1
  • Reduced fees for the European School of Radiology (ESOR) 2
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology 
  • Content e-mails for all ESR journals4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 11 /year

Yes! That is less than €1 per month.

Free membership

for radiologists, radiology residents or professionals of allied sciences engaged in practice, teaching or research residing outside Europe as well as individual qualified professionals with an interest in radiology and medical imaging who do not fulfil individual or all requirements for any other ESR membership category & former full members who have retired from all clinical practice
  • Reduced registration fees for ECR 1
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology
  • Content e-mails for all ESR journals 4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 0

The best things in life are free.

ESR Friends

For students, company representatives or hospital managers etc.

  • Content e-mails for all 3 ESR journals 4
  • Updates on offers & events through our newsletters

€ 0

Friendship doesn’t cost a thing.

The membership type best fitting for you will be selected automatically during the application process.

Footnotes:

01

Reduced registration fees for ECR 2025:
Provided that ESR 2024 membership is activated and approved by August 31, 2024.

02
Not all activities included
03
Examination based on the ESR European Training Curriculum (radiologists or radiology residents).
04
European Radiology, Insights into Imaging, European Radiology Experimental.