
Emphysema quantification using low-dose computed tomography with deep learning-based kernel conversion comparison
This study used a sample of 131 participants who underwent low-dose computed tomography (LDCT) and standard-dose computed tomography (SDCT) to determine the effect of dose reduction and kernel selection on quantifying emphysema. The authors determined that the deep learning-based CT kernel conversation of sharp kernel in LDCT significantly reduced the variation in emphysema quantification. Key points Low-dose computed tomography with