thorax

Welcome to the blog on Artificial Intelligence of
the European Society of Radiology

This blog aims at bringing educational and critical perspectives on AI to readers. It should help imaging professionals to learn and keep up to date with the technologies being developed in this rapidly evolving field.

Most used hashtags:

Latest posts

Reproducibility of a combined AI and optimal-surface graph-cut method to automate bronchial parameter extraction

The authors of this study evaluated the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters. A deep-learning model was trained on 24 low-dose chest CT scans. The study demonstrated a comprehensive and fully automatic pipeline for bronchial parameter measurement on low-dose CT using open-source tools. Key points

Read More →

Creating a training set for AI from initial segmentations of airways

An important challenge in the use of artificial intelligence (AI) for medical image segmentation tasks is the lack of high-quality, scan protocol-specific datasets. AI performs best on narrow tasks with homogenous specifications. Thus, pre-trained models may be inadequate for use in centre-specific studies if the scan protocols do not match. For the airway segmentation task in the Imaging in Lifelines

Read More →

A fully automatic artificial intelligence–based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis

The authors of this study aimed to develop an artificial intelligence (AI)-based fully automated CT image analysis system in order to detect and diagnose pulmonary tuberculosis (TB). This was achieved through the retrospective use of 892 chest CT scans from pathogen-confirmed TB patients. It was found that the end-to-end AI system based on chest CT is able to achieve human-level

Read More →

Radiomics approach for survival prediction in chronic obstructive pulmonary disease

The idea of quantification of disease severity of chronic obstructive pulmonary disease (COPD) with CT has been introduced as early as the late 1980s with the so-called ‘density mask’ method for emphysema quantification. Since then, many novel methods of quantification, including the assessment of airway wall thickening, air trapping, vascular change and so on, have been introduced, and many studies

Read More →

Deep learning detection and quantification of pneumothorax in heterogeneous routine chest computed tomography

In this study, the authors proposed a deep learning method for the detection and quantification of pneumothorax in heterogeneous routine clinical data, which may facilitate the automated triage of urgent examinations and enable support in the treatment decision. Key points Pneumothorax is an important pathology to be included in applications that are designed to triage urgent imaging examinations. Heterogeneity in

Read More →

Deep learning: definition and perspectives for thoracic imaging

The authors of this review aimed to provide definitions for understanding the methods of machine learning, deep learning, and convolutional neural networks (CNN) and to dive into their roles and potential in the area of thoracic imaging. Key points Deep learning outperforms other machine learning techniques for number of tasks in radiology. Convolutional neural network is the most popular deep

Read More →

Reproducibility of a combined AI and optimal-surface graph-cut method to automate bronchial parameter extraction

The authors of this study evaluated the reproducibility of a deep learning and optimal-surface graph-cut method to automatically segment the airway lumen and wall, and calculate bronchial parameters. A deep-learning model was trained on 24 low-dose chest CT scans. The study demonstrated a comprehensive and fully automatic pipeline for bronchial parameter measurement on low-dose CT using open-source tools. Key points

Read More →

Creating a training set for AI from initial segmentations of airways

An important challenge in the use of artificial intelligence (AI) for medical image segmentation tasks is the lack of high-quality, scan protocol-specific datasets. AI performs best on narrow tasks with homogenous specifications. Thus, pre-trained models may be inadequate for use in centre-specific studies if the scan protocols do not match. For the airway segmentation task in the Imaging in Lifelines

Read More →

A fully automatic artificial intelligence–based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis

The authors of this study aimed to develop an artificial intelligence (AI)-based fully automated CT image analysis system in order to detect and diagnose pulmonary tuberculosis (TB). This was achieved through the retrospective use of 892 chest CT scans from pathogen-confirmed TB patients. It was found that the end-to-end AI system based on chest CT is able to achieve human-level

Read More →

Radiomics approach for survival prediction in chronic obstructive pulmonary disease

The idea of quantification of disease severity of chronic obstructive pulmonary disease (COPD) with CT has been introduced as early as the late 1980s with the so-called ‘density mask’ method for emphysema quantification. Since then, many novel methods of quantification, including the assessment of airway wall thickening, air trapping, vascular change and so on, have been introduced, and many studies

Read More →

Deep learning detection and quantification of pneumothorax in heterogeneous routine chest computed tomography

In this study, the authors proposed a deep learning method for the detection and quantification of pneumothorax in heterogeneous routine clinical data, which may facilitate the automated triage of urgent examinations and enable support in the treatment decision. Key points Pneumothorax is an important pathology to be included in applications that are designed to triage urgent imaging examinations. Heterogeneity in

Read More →

Deep learning: definition and perspectives for thoracic imaging

The authors of this review aimed to provide definitions for understanding the methods of machine learning, deep learning, and convolutional neural networks (CNN) and to dive into their roles and potential in the area of thoracic imaging. Key points Deep learning outperforms other machine learning techniques for number of tasks in radiology. Convolutional neural network is the most popular deep

Read More →

Become A Member Today!

You will have access to a wide range of benefits that can help you advance your career and stay up-to-date with the latest developments in the field of radiology. These benefits include access to educational resources, networking opportunities with other professionals in the field, opportunities to participate in research projects and clinical trials, and access to the latest technologies and techniques. 

Check out our different membership options.

If you don’t find a fitting membership send us an email here.

Membership

for radiologists, radiology residents, professionals of allied sciences (including radiographers/radiological technologists, nuclear medicine physicians, medical physicists, and data scientists) & professionals of allied sciences in training residing within the boundaries of Europe

  • Reduced registration fees for ECR 1
  • Reduced fees for the European School of Radiology (ESOR) 2
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology 
  • Content e-mails for all ESR journals4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 11 /year

Yes! That is less than €1 per month.

Free membership

for radiologists, radiology residents or professionals of allied sciences engaged in practice, teaching or research residing outside Europe as well as individual qualified professionals with an interest in radiology and medical imaging who do not fulfil individual or all requirements for any other ESR membership category & former full members who have retired from all clinical practice
  • Reduced registration fees for ECR 1
  • Option to participate in the European Diploma. 3
  • Free electronic access to the journal European Radiology
  • Content e-mails for all ESR journals 4
  • Updates on offers & events through our newsletters
  • Exclusive access to the ESR feed in Juisci

€ 0

The best things in life are free.

ESR Friends

For students, company representatives or hospital managers etc.

  • Content e-mails for all 3 ESR journals 4
  • Updates on offers & events through our newsletters

€ 0

Friendship doesn’t cost a thing.

The membership type best fitting for you will be selected automatically during the application process.

Footnotes:

01

Reduced registration fees for ECR 2025:
Provided that ESR 2024 membership is activated and approved by August 31, 2024.

02
Not all activities included
03
Examination based on the ESR European Training Curriculum (radiologists or radiology residents).
04
European Radiology, Insights into Imaging, European Radiology Experimental.